mirror of
https://github.com/microsoft/graphrag.git
synced 2026-01-14 09:07:20 +08:00
* Remove "strategy" from community reports config/workflow * Remove extraction strategy from extract_graph * Remove summarization strategy from extract_graph * Remove strategy from claim extraction * Strongly type prompt templates * Remove strategy from embed_text * Push hydrated params into community report workflows * Push hyrdated params into extract covariates * Push hydrated params into extract graph NLP * Push hydrated params into extract graph * Push hydrated params into text embeddings * Remove a few more low-level defaults * Semver * Remove configurable prompt delimiters * Update smoke tests
72 lines
2.2 KiB
Python
72 lines
2.2 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
|
|
|
|
from graphrag.config.create_graphrag_config import create_graphrag_config
|
|
from graphrag.data_model.schemas import COMMUNITY_REPORTS_FINAL_COLUMNS
|
|
from graphrag.index.operations.summarize_communities.community_reports_extractor import (
|
|
CommunityReportResponse,
|
|
FindingModel,
|
|
)
|
|
from graphrag.index.workflows.create_community_reports import (
|
|
run_workflow,
|
|
)
|
|
from graphrag.utils.storage import load_table_from_storage
|
|
|
|
from .util import (
|
|
DEFAULT_MODEL_CONFIG,
|
|
compare_outputs,
|
|
create_test_context,
|
|
load_test_table,
|
|
)
|
|
|
|
MOCK_RESPONSES = [
|
|
CommunityReportResponse(
|
|
title="<report_title>",
|
|
summary="<executive_summary>",
|
|
rating=2,
|
|
rating_explanation="<rating_explanation>",
|
|
findings=[
|
|
FindingModel(
|
|
summary="<insight_1_summary>", explanation="<insight_1_explanation"
|
|
),
|
|
FindingModel(
|
|
summary="<insight_2_summary>", explanation="<insight_2_explanation"
|
|
),
|
|
],
|
|
)
|
|
]
|
|
|
|
|
|
async def test_create_community_reports():
|
|
expected = load_test_table("community_reports")
|
|
|
|
context = await create_test_context(
|
|
storage=[
|
|
"covariates",
|
|
"relationships",
|
|
"entities",
|
|
"communities",
|
|
]
|
|
)
|
|
|
|
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
|
|
config.models["default_chat_model"].type = "mock_chat"
|
|
config.models["default_chat_model"].responses = MOCK_RESPONSES # type: ignore
|
|
|
|
await run_workflow(config, context)
|
|
|
|
actual = await load_table_from_storage("community_reports", context.output_storage)
|
|
|
|
assert len(actual.columns) == len(expected.columns)
|
|
|
|
# only assert a couple of columns that are not mock - most of this table is LLM-generated
|
|
compare_outputs(actual, expected, columns=["community", "level"])
|
|
|
|
# assert a handful of mock data items to confirm they get put in the right spot
|
|
assert actual["rank"][:1][0] == 2
|
|
assert actual["rating_explanation"][:1][0] == "<rating_explanation>"
|
|
|
|
for column in COMMUNITY_REPORTS_FINAL_COLUMNS:
|
|
assert column in actual.columns
|