diff --git a/appendix-A/03_main-chapter-code/exercise-solutions.ipynb b/appendix-A/03_main-chapter-code/exercise-solutions.ipynb deleted file mode 100644 index f934b2d..0000000 --- a/appendix-A/03_main-chapter-code/exercise-solutions.ipynb +++ /dev/null @@ -1,176 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise A.3" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "\n", - "class NeuralNetwork(torch.nn.Module):\n", - " def __init__(self, num_inputs, num_outputs):\n", - " super().__init__()\n", - "\n", - " self.layers = torch.nn.Sequential(\n", - " \n", - " # 1st hidden layer\n", - " torch.nn.Linear(num_inputs, 30),\n", - " torch.nn.ReLU(),\n", - "\n", - " # 2nd hidden layer\n", - " torch.nn.Linear(30, 20),\n", - " torch.nn.ReLU(),\n", - "\n", - " # output layer\n", - " torch.nn.Linear(20, num_outputs),\n", - " )\n", - "\n", - " def forward(self, x):\n", - " logits = self.layers(x)\n", - " return logits" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Total number of trainable model parameters: 752\n" - ] - } - ], - "source": [ - "model = NeuralNetwork(2, 2)\n", - "\n", - "num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n", - "print(\"Total number of trainable model parameters:\", num_params)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise A.4" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "qGgnamiyLJxp" - }, - "outputs": [], - "source": [ - "import torch\n", - "\n", - "a = torch.rand(100, 200)\n", - "b = torch.rand(200, 300)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "CvGvIeVkLzXE", - "outputId": "44d027be-0787-4348-9c06-4e559d94d0e1" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "63.8 µs ± 8.7 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" - ] - } - ], - "source": [ - "%timeit a @ b" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "OmRtZLa9L2ZG" - }, - "outputs": [], - "source": [ - "a, b = a.to(\"cuda\"), b.to(\"cuda\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "duLEhXDPL6k0", - "outputId": "3486471d-fd62-446f-9855-2d01f41fd101" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "13.8 µs ± 425 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n" - ] - } - ], - "source": [ - "%timeit a @ b" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Zqqa-To2L749" - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "V100", - "machine_shape": "hm", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -}