mirror of
https://github.com/datawhalechina/llms-from-scratch-cn.git
synced 2026-01-14 01:07:34 +08:00
180 lines
5.1 KiB
Python
180 lines
5.1 KiB
Python
# 附录A :PyTorch的介绍(第三部分)
|
||
|
||
import torch
|
||
import torch.nn.functional as F
|
||
from torch.utils.data import Dataset, DataLoader
|
||
|
||
# 导入新的库
|
||
import os
|
||
import torch.multiprocessing as mp
|
||
from torch.utils.data.distributed import DistributedSampler
|
||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||
from torch.distributed import init_process_group, destroy_process_group
|
||
|
||
|
||
# 创建一个新的函数用于初始化一个分布式进程(每个GPU一个进程)
|
||
# 该函数允许进程之间的通信
|
||
def ddp_setup(rank, world_size):
|
||
"""
|
||
提示:
|
||
rank:特定的进程编号(进程ID)
|
||
world_size:组内的进程总数
|
||
"""
|
||
|
||
# 正在运行的机器编号 ID:进程0
|
||
# 这里的前提是假设所有的GPU在同一台机器上
|
||
os.environ["MASTER_ADDR"] = "localhost"
|
||
# 机器上任意的空闲端口号
|
||
os.environ["MASTER_PORT"] = "12345"
|
||
|
||
# 初始化进程
|
||
# Windows 用户使用"gloo"来替代下面代码中的"nccl"
|
||
# nccl: NVIDIA Collective Communication Library
|
||
init_process_group(backend="nccl", rank=rank, world_size=world_size)
|
||
torch.cuda.set_device(rank)
|
||
|
||
|
||
class ToyDataset(Dataset):
|
||
def __init__(self, X, y):
|
||
self.features = X
|
||
self.labels = y
|
||
|
||
def __getitem__(self, index):
|
||
one_x = self.features[index]
|
||
one_y = self.labels[index]
|
||
return one_x, one_y
|
||
|
||
def __len__(self):
|
||
return self.labels.shape[0]
|
||
|
||
|
||
class NeuralNetwork(torch.nn.Module):
|
||
def __init__(self, num_inputs, num_outputs):
|
||
super().__init__()
|
||
|
||
self.layers = torch.nn.Sequential(
|
||
# 第一个隐藏层
|
||
torch.nn.Linear(num_inputs, 30),
|
||
torch.nn.ReLU(),
|
||
|
||
# 第二个隐藏层
|
||
torch.nn.Linear(30, 20),
|
||
torch.nn.ReLU(),
|
||
|
||
# 输出层
|
||
torch.nn.Linear(20, num_outputs),
|
||
)
|
||
|
||
def forward(self, x):
|
||
logits = self.layers(x)
|
||
return logits
|
||
|
||
|
||
def prepare_dataset():
|
||
X_train = torch.tensor([
|
||
[-1.2, 3.1],
|
||
[-0.9, 2.9],
|
||
[-0.5, 2.6],
|
||
[2.3, -1.1],
|
||
[2.7, -1.5]
|
||
])
|
||
y_train = torch.tensor([0, 0, 0, 1, 1])
|
||
|
||
X_test = torch.tensor([
|
||
[-0.8, 2.8],
|
||
[2.6, -1.6],
|
||
])
|
||
y_test = torch.tensor([0, 1])
|
||
|
||
train_ds = ToyDataset(X_train, y_train)
|
||
test_ds = ToyDataset(X_test, y_test)
|
||
|
||
train_loader = DataLoader(
|
||
dataset=train_ds,
|
||
batch_size=2,
|
||
shuffle=False, # 这里设置为False
|
||
pin_memory=True,
|
||
drop_last=True,
|
||
# 在多个GPU上划分批次,确保批次之间不重叠样本
|
||
sampler=DistributedSampler(train_ds)
|
||
)
|
||
test_loader = DataLoader(
|
||
dataset=test_ds,
|
||
batch_size=2,
|
||
shuffle=False,
|
||
)
|
||
return train_loader, test_loader
|
||
|
||
|
||
# 包装器
|
||
def main(rank, world_size, num_epochs):
|
||
|
||
ddp_setup(rank, world_size) #
|
||
|
||
train_loader, test_loader = prepare_dataset()
|
||
model = NeuralNetwork(num_inputs=2, num_outputs=2)
|
||
model.to(rank)
|
||
optimizer = torch.optim.SGD(model.parameters(), lr=0.5)
|
||
|
||
model = DDP(model, device_ids=[rank]) # 使用分布式数据并行(DDP)将模型进行包装
|
||
# 现在核心模型可以通过 model.module 访问
|
||
|
||
for epoch in range(num_epochs):
|
||
|
||
model.train()
|
||
for features, labels in enumerate(train_loader):
|
||
|
||
features, labels = features.to(rank), labels.to(rank)
|
||
logits = model(features)
|
||
loss = F.cross_entropy(logits, labels) # 损失函数
|
||
|
||
optimizer.zero_grad()
|
||
loss.backward()
|
||
optimizer.step()
|
||
|
||
### 日志
|
||
print(f"[GPU{rank}] Epoch: {epoch+1:03d}/{num_epochs:03d}"
|
||
f" | Batchsize {labels.shape[0]:03d}"
|
||
f" | Train/Val Loss: {loss:.2f}")
|
||
|
||
model.eval()
|
||
train_acc = compute_accuracy(model, train_loader, device=rank)
|
||
print(f"[GPU{rank}] Training accuracy", train_acc)
|
||
test_acc = compute_accuracy(model, test_loader, device=rank)
|
||
print(f"[GPU{rank}] Test accuracy", test_acc)
|
||
|
||
destroy_process_group() # 清理退出分布式模式
|
||
|
||
|
||
def compute_accuracy(model, dataloader, device):
|
||
model = model.eval()
|
||
correct = 0.0
|
||
total_examples = 0
|
||
|
||
for idx, (features, labels) in enumerate(dataloader):
|
||
features, labels = features.to(device), labels.to(device)
|
||
|
||
with torch.no_grad():
|
||
logits = model(features)
|
||
predictions = torch.argmax(logits, dim=1)
|
||
compare = labels == predictions
|
||
correct += torch.sum(compare)
|
||
total_examples += len(compare)
|
||
return (correct / total_examples).item()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
print("PyTorch version:", torch.__version__)
|
||
print("CUDA available:", torch.cuda.is_available())
|
||
print("Number of GPUs available:", torch.cuda.device_count())
|
||
|
||
torch.manual_seed(123)
|
||
|
||
# 新建进程
|
||
# 请注意,spawn会自动传递排名
|
||
num_epochs = 3
|
||
world_size = torch.cuda.device_count()
|
||
mp.spawn(main, args=(world_size, num_epochs), nprocs=world_size)
|
||
# nprocs=world_size 会为每个GPU生成一个进程
|
||
|