mirror of
https://github.com/datawhalechina/llms-from-scratch-cn.git
synced 2026-02-20 01:34:46 +08:00
273 lines
8.9 KiB
Python
273 lines
8.9 KiB
Python
########################################################################################################
|
|
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
|
########################################################################################################
|
|
|
|
import numpy as np
|
|
import math, json, time, types, copy, sys, os
|
|
import torch
|
|
from torch.nn import functional as F
|
|
import torch.nn as nn
|
|
|
|
from transformers import PreTrainedTokenizerFast
|
|
|
|
RUN_DEVICE = 'cpu' # cpu cuda
|
|
ctx_len = 768
|
|
n_layer = 12
|
|
n_embd = 768
|
|
# n_layer = 24
|
|
# n_embd = 1024
|
|
|
|
# ---> download RWKV-3 169M model from https://huggingface.co/BlinkDL/rwkv-3-pile-169m/tree/main
|
|
|
|
# MODEL_NAME = '/data1/ckw/RWKV-3-Pile-430M-20220817-10602'
|
|
MODEL_NAME = '/data1/ckw/RWKV-3-Pile-20220720-10704'
|
|
K_EPS = 1e-8
|
|
|
|
vocab_size = 50277
|
|
VOCAB_NAME = '20B_tokenizer.json'
|
|
|
|
print(f'\n* running on {RUN_DEVICE}')
|
|
|
|
################################################################################################################
|
|
|
|
class RWKV_ChannelMix(nn.Module):
|
|
def __init__(self, layer_id):
|
|
super().__init__()
|
|
self.layer_id = layer_id
|
|
|
|
self.time_shift = nn.ZeroPad2d((0,0,1,-1))
|
|
self.time_mix_k = nn.Parameter(torch.ones(1, 1, n_embd))
|
|
self.time_mix_r = nn.Parameter(torch.ones(1, 1, n_embd))
|
|
|
|
hidden_sz = 4 * n_embd
|
|
self.key = nn.Linear(n_embd, hidden_sz, bias=False)
|
|
self.receptance = nn.Linear(n_embd, n_embd, bias=False)
|
|
self.value = nn.Linear(hidden_sz, n_embd, bias=False)
|
|
|
|
def forward(self, x):
|
|
xx = self.time_shift(x)
|
|
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
|
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
|
|
|
k = self.key(xk)
|
|
k = torch.square(torch.relu(k))
|
|
kv = self.value(k)
|
|
|
|
rkv = torch.sigmoid(self.receptance(xr)) * kv
|
|
return rkv
|
|
|
|
class RWKV_TimeMix(nn.Module):
|
|
def __init__(self, layer_id):
|
|
super().__init__()
|
|
self.layer_id = layer_id
|
|
self.time_decay = nn.Parameter(torch.ones(n_embd, 1))
|
|
self.time_curve = torch.tensor([-(ctx_len - 2 - i) for i in range(ctx_len-1)]).unsqueeze(0)
|
|
self.time_first = nn.Parameter(torch.ones(n_embd, 1) * math.log(0.3))
|
|
|
|
self.time_shift = nn.ZeroPad2d((0,0,1,-1))
|
|
self.time_mix_k = nn.Parameter(torch.ones(1,1,n_embd))
|
|
self.time_mix_v = nn.Parameter(torch.ones(1,1,n_embd))
|
|
self.time_mix_r = nn.Parameter(torch.ones(1,1,n_embd))
|
|
|
|
self.key = nn.Linear(n_embd, n_embd, bias=False)
|
|
self.value = nn.Linear(n_embd, n_embd, bias=False)
|
|
self.receptance = nn.Linear(n_embd, n_embd, bias=False)
|
|
|
|
self.output = nn.Linear(n_embd, n_embd, bias=False)
|
|
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
|
|
xx = self.time_shift(x)
|
|
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
|
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
|
|
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
|
|
|
k = self.key(xk).transpose(-1, -2)
|
|
v = self.value(xv).transpose(-1, -2)
|
|
r = self.receptance(xr)
|
|
|
|
k = torch.clamp(k, max=60)
|
|
k = torch.exp(k)
|
|
|
|
kv = k * v
|
|
|
|
self.time_w = torch.cat([torch.exp(self.time_decay) * self.time_curve.to(self.time_decay.device), self.time_first], dim=-1)
|
|
w = torch.exp(self.time_w)
|
|
|
|
w = w[:,-T:].unsqueeze(1)
|
|
wkv = F.conv1d(nn.ZeroPad2d((T-1, 0, 0, 0))(kv), w, groups=C)
|
|
wk = F.conv1d(nn.ZeroPad2d((T-1, 0, 0, 0))(k), w, groups=C) + K_EPS
|
|
|
|
rwkv = torch.sigmoid(r) * (wkv / wk).transpose(-1, -2)
|
|
|
|
rwkv = self.output(rwkv)
|
|
return rwkv
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, layer_id):
|
|
super().__init__()
|
|
self.layer_id = layer_id
|
|
|
|
self.ln1 = nn.LayerNorm(n_embd)
|
|
self.ln2 = nn.LayerNorm(n_embd)
|
|
if self.layer_id == 0:
|
|
self.ln0 = nn.LayerNorm(n_embd)
|
|
|
|
self.att = RWKV_TimeMix(layer_id)
|
|
self.ffn = RWKV_ChannelMix(layer_id)
|
|
|
|
def forward(self, x):
|
|
if self.layer_id == 0:
|
|
x = self.ln0(x)
|
|
x = x + self.att(self.ln1(x))
|
|
x = x + self.ffn(self.ln2(x))
|
|
return x
|
|
|
|
class RWKV_GPT(nn.Module):
|
|
def __init__(self, MODEL_NAME=MODEL_NAME):
|
|
super().__init__()
|
|
print('\nloading RWKV-GPT', MODEL_NAME)
|
|
|
|
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=VOCAB_NAME)
|
|
self.emb = nn.Embedding(vocab_size, n_embd)
|
|
|
|
self.blocks = nn.Sequential(*[Block(i) for i in range(n_layer)])
|
|
|
|
self.ln_out = nn.LayerNorm(n_embd)
|
|
self.head = nn.Linear(n_embd, vocab_size, bias=False)
|
|
|
|
self.ctx_len = ctx_len
|
|
self.eval()
|
|
self.load_state_dict(torch.load(MODEL_NAME + '.pth'))
|
|
self.eval()
|
|
|
|
def forward(self, idx):
|
|
B, T = idx.size()
|
|
assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len."
|
|
|
|
x = self.emb(idx)
|
|
x = self.blocks(x)
|
|
x = self.ln_out(x)
|
|
x = self.head(x)
|
|
|
|
return x
|
|
|
|
################################################################################################################
|
|
|
|
time_buf = {}
|
|
|
|
class RWKV_RNN():
|
|
def __init__(self, MODEL_NAME=MODEL_NAME):
|
|
print('\nloading RWKV-RNN', MODEL_NAME)
|
|
self.ctx_len = ctx_len
|
|
self.n_layer = n_layer
|
|
self.n_embd = n_embd
|
|
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=VOCAB_NAME)
|
|
|
|
self.w = types.SimpleNamespace()
|
|
|
|
w = torch.load(MODEL_NAME + '.pth', map_location=torch.device(RUN_DEVICE))
|
|
|
|
for x in w.keys():
|
|
if '.time_' in x:
|
|
w[x] = w[x].squeeze()
|
|
if '.time_decay' in x:
|
|
w[x] = torch.exp(-torch.exp(w[x]))
|
|
if '.time_first' in x:
|
|
w[x] = torch.exp(w[x])
|
|
|
|
xx = x.split('.')
|
|
here = self.w
|
|
for i in range(len(xx)):
|
|
if xx[i].isdigit():
|
|
ii = int(xx[i])
|
|
if ii not in here:
|
|
here[ii] = types.SimpleNamespace()
|
|
here = here[ii]
|
|
else:
|
|
if i == len(xx) - 1:
|
|
setattr(here, xx[i], w[x])
|
|
elif not hasattr(here, xx[i]):
|
|
if xx[i+1].isdigit():
|
|
setattr(here, xx[i], {})
|
|
else:
|
|
setattr(here, xx[i], types.SimpleNamespace())
|
|
here = getattr(here, xx[i])
|
|
|
|
self.clear()
|
|
|
|
def clear(self):
|
|
self.xx = {}
|
|
self.aa = {}
|
|
self.bb = {}
|
|
def save(self, target):
|
|
target.xx = copy.deepcopy(self.xx)
|
|
target.aa = copy.deepcopy(self.aa)
|
|
target.bb = copy.deepcopy(self.bb)
|
|
def load(self, target):
|
|
self.xx = copy.deepcopy(target.xx)
|
|
self.aa = copy.deepcopy(target.aa)
|
|
self.bb = copy.deepcopy(target.bb)
|
|
|
|
def LN(self, xx, w):
|
|
return F.layer_norm(xx, (n_embd,), weight=w.weight, bias=w.bias)
|
|
|
|
def FF(self, xx, w, name):
|
|
if name not in self.xx:
|
|
self.xx[name] = torch.zeros(n_embd, device=RUN_DEVICE)
|
|
xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k)
|
|
xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r)
|
|
|
|
self.xx[name] = xx
|
|
|
|
r = torch.sigmoid(w.receptance.weight @ xr)
|
|
k = torch.square(torch.relu(w.key.weight @ xk))
|
|
kv = w.value.weight @ k
|
|
|
|
return r * kv
|
|
|
|
def SA(self, xx, w, name):
|
|
if name not in self.xx:
|
|
self.xx[name] = torch.zeros(n_embd, device=RUN_DEVICE)
|
|
self.aa[name] = torch.zeros(n_embd, device=RUN_DEVICE)
|
|
self.bb[name] = torch.zeros(n_embd, device=RUN_DEVICE)
|
|
|
|
xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k)
|
|
xv = xx * w.time_mix_v + self.xx[name] * (1 - w.time_mix_v)
|
|
xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r)
|
|
|
|
self.xx[name] = xx
|
|
|
|
r = torch.sigmoid(w.receptance.weight @ xr)
|
|
|
|
k = torch.exp(torch.clamp(w.key.weight @ xk, max=60))
|
|
v = w.value.weight @ xv
|
|
kv = k * v
|
|
|
|
a = self.aa[name] + w.time_first * kv
|
|
b = self.bb[name] + w.time_first * k
|
|
self.aa[name] = w.time_decay * self.aa[name] + kv
|
|
self.bb[name] = w.time_decay * self.bb[name] + k
|
|
|
|
rwkv = r * a / (b + K_EPS)
|
|
|
|
return w.output.weight @ rwkv
|
|
|
|
def run(self, ctx):
|
|
w = self.w
|
|
x = w.emb.weight[ctx[-1]]
|
|
|
|
x = self.LN(x, w.blocks[0].ln0)
|
|
for i in range(n_layer):
|
|
x = x + self.SA(self.LN(x, w.blocks[i].ln1), w.blocks[i].att, f'att.{i}')
|
|
x = x + self.FF(self.LN(x, w.blocks[i].ln2), w.blocks[i].ffn, f'ffn.{i}')
|
|
|
|
x = self.LN(x, w.ln_out)
|
|
|
|
x = w.head.weight @ x
|
|
x = x.tolist()
|
|
|
|
return x
|
|
|
|
################################################################################################################ |