llms-from-scratch-cn/Model_Architecture_Discussions/rwkv-v3/model.py
2024-05-31 16:44:23 +08:00

273 lines
8.9 KiB
Python

########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import numpy as np
import math, json, time, types, copy, sys, os
import torch
from torch.nn import functional as F
import torch.nn as nn
from transformers import PreTrainedTokenizerFast
RUN_DEVICE = 'cpu' # cpu cuda
ctx_len = 768
n_layer = 12
n_embd = 768
# n_layer = 24
# n_embd = 1024
# ---> download RWKV-3 169M model from https://huggingface.co/BlinkDL/rwkv-3-pile-169m/tree/main
# MODEL_NAME = '/data1/ckw/RWKV-3-Pile-430M-20220817-10602'
MODEL_NAME = '/data1/ckw/RWKV-3-Pile-20220720-10704'
K_EPS = 1e-8
vocab_size = 50277
VOCAB_NAME = '20B_tokenizer.json'
print(f'\n* running on {RUN_DEVICE}')
################################################################################################################
class RWKV_ChannelMix(nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0,0,1,-1))
self.time_mix_k = nn.Parameter(torch.ones(1, 1, n_embd))
self.time_mix_r = nn.Parameter(torch.ones(1, 1, n_embd))
hidden_sz = 4 * n_embd
self.key = nn.Linear(n_embd, hidden_sz, bias=False)
self.receptance = nn.Linear(n_embd, n_embd, bias=False)
self.value = nn.Linear(hidden_sz, n_embd, bias=False)
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.square(torch.relu(k))
kv = self.value(k)
rkv = torch.sigmoid(self.receptance(xr)) * kv
return rkv
class RWKV_TimeMix(nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_decay = nn.Parameter(torch.ones(n_embd, 1))
self.time_curve = torch.tensor([-(ctx_len - 2 - i) for i in range(ctx_len-1)]).unsqueeze(0)
self.time_first = nn.Parameter(torch.ones(n_embd, 1) * math.log(0.3))
self.time_shift = nn.ZeroPad2d((0,0,1,-1))
self.time_mix_k = nn.Parameter(torch.ones(1,1,n_embd))
self.time_mix_v = nn.Parameter(torch.ones(1,1,n_embd))
self.time_mix_r = nn.Parameter(torch.ones(1,1,n_embd))
self.key = nn.Linear(n_embd, n_embd, bias=False)
self.value = nn.Linear(n_embd, n_embd, bias=False)
self.receptance = nn.Linear(n_embd, n_embd, bias=False)
self.output = nn.Linear(n_embd, n_embd, bias=False)
def forward(self, x):
B, T, C = x.size()
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk).transpose(-1, -2)
v = self.value(xv).transpose(-1, -2)
r = self.receptance(xr)
k = torch.clamp(k, max=60)
k = torch.exp(k)
kv = k * v
self.time_w = torch.cat([torch.exp(self.time_decay) * self.time_curve.to(self.time_decay.device), self.time_first], dim=-1)
w = torch.exp(self.time_w)
w = w[:,-T:].unsqueeze(1)
wkv = F.conv1d(nn.ZeroPad2d((T-1, 0, 0, 0))(kv), w, groups=C)
wk = F.conv1d(nn.ZeroPad2d((T-1, 0, 0, 0))(k), w, groups=C) + K_EPS
rwkv = torch.sigmoid(r) * (wkv / wk).transpose(-1, -2)
rwkv = self.output(rwkv)
return rwkv
class Block(nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(n_embd)
self.att = RWKV_TimeMix(layer_id)
self.ffn = RWKV_ChannelMix(layer_id)
def forward(self, x):
if self.layer_id == 0:
x = self.ln0(x)
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
return x
class RWKV_GPT(nn.Module):
def __init__(self, MODEL_NAME=MODEL_NAME):
super().__init__()
print('\nloading RWKV-GPT', MODEL_NAME)
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=VOCAB_NAME)
self.emb = nn.Embedding(vocab_size, n_embd)
self.blocks = nn.Sequential(*[Block(i) for i in range(n_layer)])
self.ln_out = nn.LayerNorm(n_embd)
self.head = nn.Linear(n_embd, vocab_size, bias=False)
self.ctx_len = ctx_len
self.eval()
self.load_state_dict(torch.load(MODEL_NAME + '.pth'))
self.eval()
def forward(self, idx):
B, T = idx.size()
assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len."
x = self.emb(idx)
x = self.blocks(x)
x = self.ln_out(x)
x = self.head(x)
return x
################################################################################################################
time_buf = {}
class RWKV_RNN():
def __init__(self, MODEL_NAME=MODEL_NAME):
print('\nloading RWKV-RNN', MODEL_NAME)
self.ctx_len = ctx_len
self.n_layer = n_layer
self.n_embd = n_embd
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=VOCAB_NAME)
self.w = types.SimpleNamespace()
w = torch.load(MODEL_NAME + '.pth', map_location=torch.device(RUN_DEVICE))
for x in w.keys():
if '.time_' in x:
w[x] = w[x].squeeze()
if '.time_decay' in x:
w[x] = torch.exp(-torch.exp(w[x]))
if '.time_first' in x:
w[x] = torch.exp(w[x])
xx = x.split('.')
here = self.w
for i in range(len(xx)):
if xx[i].isdigit():
ii = int(xx[i])
if ii not in here:
here[ii] = types.SimpleNamespace()
here = here[ii]
else:
if i == len(xx) - 1:
setattr(here, xx[i], w[x])
elif not hasattr(here, xx[i]):
if xx[i+1].isdigit():
setattr(here, xx[i], {})
else:
setattr(here, xx[i], types.SimpleNamespace())
here = getattr(here, xx[i])
self.clear()
def clear(self):
self.xx = {}
self.aa = {}
self.bb = {}
def save(self, target):
target.xx = copy.deepcopy(self.xx)
target.aa = copy.deepcopy(self.aa)
target.bb = copy.deepcopy(self.bb)
def load(self, target):
self.xx = copy.deepcopy(target.xx)
self.aa = copy.deepcopy(target.aa)
self.bb = copy.deepcopy(target.bb)
def LN(self, xx, w):
return F.layer_norm(xx, (n_embd,), weight=w.weight, bias=w.bias)
def FF(self, xx, w, name):
if name not in self.xx:
self.xx[name] = torch.zeros(n_embd, device=RUN_DEVICE)
xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k)
xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r)
self.xx[name] = xx
r = torch.sigmoid(w.receptance.weight @ xr)
k = torch.square(torch.relu(w.key.weight @ xk))
kv = w.value.weight @ k
return r * kv
def SA(self, xx, w, name):
if name not in self.xx:
self.xx[name] = torch.zeros(n_embd, device=RUN_DEVICE)
self.aa[name] = torch.zeros(n_embd, device=RUN_DEVICE)
self.bb[name] = torch.zeros(n_embd, device=RUN_DEVICE)
xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k)
xv = xx * w.time_mix_v + self.xx[name] * (1 - w.time_mix_v)
xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r)
self.xx[name] = xx
r = torch.sigmoid(w.receptance.weight @ xr)
k = torch.exp(torch.clamp(w.key.weight @ xk, max=60))
v = w.value.weight @ xv
kv = k * v
a = self.aa[name] + w.time_first * kv
b = self.bb[name] + w.time_first * k
self.aa[name] = w.time_decay * self.aa[name] + kv
self.bb[name] = w.time_decay * self.bb[name] + k
rwkv = r * a / (b + K_EPS)
return w.output.weight @ rwkv
def run(self, ctx):
w = self.w
x = w.emb.weight[ctx[-1]]
x = self.LN(x, w.blocks[0].ln0)
for i in range(n_layer):
x = x + self.SA(self.LN(x, w.blocks[i].ln1), w.blocks[i].att, f'att.{i}')
x = x + self.FF(self.LN(x, w.blocks[i].ln2), w.blocks[i].ffn, f'ffn.{i}')
x = self.LN(x, w.ln_out)
x = w.head.weight @ x
x = x.tolist()
return x
################################################################################################################