mirror of
https://github.com/jingyaogong/minimind.git
synced 2026-01-13 19:57:20 +08:00
Create RESOURCES.md for MiniMind project
Added a comprehensive resource collection for MiniMind, including documentation, tutorials, code examples, and community resources.
This commit is contained in:
parent
6efba3249a
commit
717d465689
137
RESOURCES.md
Normal file
137
RESOURCES.md
Normal file
@ -0,0 +1,137 @@
|
||||
# MiniMind Resources Collection
|
||||
|
||||
> A curated collection of tutorials, tools, and learning resources for MiniMind - Train a 26M-parameter GPT from scratch in just 2h!
|
||||
|
||||
## 📚 Official Documentation
|
||||
|
||||
- **MiniMind Docs**: https://minimind.readthedocs.io
|
||||
- **GitHub Pages**: https://jingyaogong.github.io/minimind
|
||||
- **Main Repository**: https://github.com/jingyaogong/minimind
|
||||
|
||||
## 🎯 Tutorials & Deep Dives
|
||||
|
||||
### Core Concepts
|
||||
- **MiniMind In-Depth**: https://github.com/hanz0809/MiniMind-in-Depth
|
||||
- Comprehensive guide covering tokenizer, RoPE, MoE, KV Cache
|
||||
- Pretraining, SFT, LoRA, and DPO techniques
|
||||
|
||||
- **Mini RWKV Implementation**: https://github.com/AliC-Li/Mini_RWKV_7
|
||||
- Alternative architecture exploration
|
||||
- Self-implemented mini-RWKV-7 model
|
||||
|
||||
### Step-by-Step Guides
|
||||
1. **Getting Started with GPT Training**
|
||||
- Understanding the 26M parameter architecture
|
||||
- Setting up your training environment
|
||||
- Data preparation and tokenization
|
||||
|
||||
2. **Attention Mechanisms in MiniMind**
|
||||
- Multi-head attention explained
|
||||
- KV cache optimization
|
||||
- Rotary Position Embeddings (RoPE)
|
||||
|
||||
3. **Efficient Training Techniques**
|
||||
- Mixed precision training
|
||||
- Gradient accumulation strategies
|
||||
- Memory-efficient implementations
|
||||
|
||||
## 💻 Code Examples
|
||||
|
||||
### Training Scenarios
|
||||
```python
|
||||
# Quick Start: Train MiniMind on your dataset
|
||||
python train.py --config configs/minimind_26m.yaml --data_path ./your_data
|
||||
```
|
||||
|
||||
### Fine-tuning Examples
|
||||
- Custom dataset fine-tuning
|
||||
- Domain-specific adaptation
|
||||
- Few-shot learning scenarios
|
||||
|
||||
### Evaluation Scripts
|
||||
```python
|
||||
# Evaluate model performance
|
||||
python eval.py --model_path ./checkpoints/best_model.pt --eval_tasks ["perplexity", "accuracy"]
|
||||
```
|
||||
|
||||
## 🛠️ Advanced Techniques
|
||||
|
||||
### Mixture of Experts (MoE)
|
||||
- Understanding sparse models
|
||||
- Router network design
|
||||
- Load balancing strategies
|
||||
|
||||
### LoRA (Low-Rank Adaptation)
|
||||
- Parameter-efficient fine-tuning
|
||||
- Adapter modules implementation
|
||||
- Multi-task LoRA setups
|
||||
|
||||
### DPO (Direct Preference Optimization)
|
||||
- Human feedback integration
|
||||
- Preference learning techniques
|
||||
- Alignment strategies
|
||||
|
||||
## 🎓 Community Resources
|
||||
|
||||
### Research Papers
|
||||
- **GPT Architecture**: "Attention Is All You Need"
|
||||
- **Parameter-Efficient Fine-tuning**: LoRA and related methods
|
||||
- **Small Model Optimization**: Techniques for efficient training
|
||||
|
||||
### Video Tutorials
|
||||
- YouTube: MiniMind training walkthroughs
|
||||
- Bilibili: Chinese language tutorials
|
||||
- Conference talks and presentations
|
||||
|
||||
### Discussion Forums
|
||||
- GitHub Discussions: https://github.com/jingyaogong/minimind/discussions
|
||||
- Issues tracker for Q&A
|
||||
- Community Discord/Slack channels
|
||||
|
||||
## ❓ Frequently Asked Questions
|
||||
|
||||
**Q: Can I run MiniMind on Google Colab?**
|
||||
A: Yes! MiniMind is optimized to run on free tier GPUs. Check the examples folder for Colab notebooks.
|
||||
|
||||
**Q: What's the minimum GPU requirement?**
|
||||
A: You can train on NVIDIA GPUs with 8GB+ VRAM. For inference, even CPUs work with quantization.
|
||||
|
||||
**Q: How do I add my own dataset?**
|
||||
A: Follow the data preparation guide in docs/data_prep.md. Convert your text to the required format.
|
||||
|
||||
**Q: Can I use MiniMind for production?**
|
||||
A: Yes, under Apache 2.0 license. Consider additional safety checks and alignments for production use.
|
||||
|
||||
## 📦 Related Projects
|
||||
|
||||
- **nanoGPT**: Minimal GPT implementation by Andrej Karpathy
|
||||
- **minGPT**: Educational GPT codebase
|
||||
- **GPT-2 from scratch**: Complete implementation tutorials
|
||||
|
||||
## 🔗 Useful Links
|
||||
|
||||
- **Hugging Face Models**: Pre-trained checkpoints
|
||||
- **Datasets**: Common training corpora
|
||||
- **Benchmarks**: Performance comparisons
|
||||
|
||||
## 📝 Contributing
|
||||
|
||||
Want to add more resources? Please:
|
||||
1. Fork the repository
|
||||
2. Add your resource with description
|
||||
3. Submit a pull request
|
||||
4. Follow the contribution guidelines
|
||||
|
||||
## 💬 Community
|
||||
|
||||
- **GitHub Issues**: Bug reports and feature requests
|
||||
- **Discussions**: General Q&A and ideas
|
||||
- **Pull Requests**: Code contributions welcome!
|
||||
|
||||
---
|
||||
|
||||
**Last Updated**: October 2025
|
||||
**Maintainers**: MiniMind Community
|
||||
**License**: Apache-2.0
|
||||
|
||||
*This resource collection is community-driven. Contributions are welcome!*
|
||||
Loading…
Reference in New Issue
Block a user