Create RESOURCES.md for MiniMind project

Added a comprehensive resource collection for MiniMind, including documentation, tutorials, code examples, and community resources.
This commit is contained in:
VinodHatti_ 2025-10-24 20:18:47 +05:30 committed by GitHub
parent 6efba3249a
commit 717d465689
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

137
RESOURCES.md Normal file
View File

@ -0,0 +1,137 @@
# MiniMind Resources Collection
> A curated collection of tutorials, tools, and learning resources for MiniMind - Train a 26M-parameter GPT from scratch in just 2h!
## 📚 Official Documentation
- **MiniMind Docs**: https://minimind.readthedocs.io
- **GitHub Pages**: https://jingyaogong.github.io/minimind
- **Main Repository**: https://github.com/jingyaogong/minimind
## 🎯 Tutorials & Deep Dives
### Core Concepts
- **MiniMind In-Depth**: https://github.com/hanz0809/MiniMind-in-Depth
- Comprehensive guide covering tokenizer, RoPE, MoE, KV Cache
- Pretraining, SFT, LoRA, and DPO techniques
- **Mini RWKV Implementation**: https://github.com/AliC-Li/Mini_RWKV_7
- Alternative architecture exploration
- Self-implemented mini-RWKV-7 model
### Step-by-Step Guides
1. **Getting Started with GPT Training**
- Understanding the 26M parameter architecture
- Setting up your training environment
- Data preparation and tokenization
2. **Attention Mechanisms in MiniMind**
- Multi-head attention explained
- KV cache optimization
- Rotary Position Embeddings (RoPE)
3. **Efficient Training Techniques**
- Mixed precision training
- Gradient accumulation strategies
- Memory-efficient implementations
## 💻 Code Examples
### Training Scenarios
```python
# Quick Start: Train MiniMind on your dataset
python train.py --config configs/minimind_26m.yaml --data_path ./your_data
```
### Fine-tuning Examples
- Custom dataset fine-tuning
- Domain-specific adaptation
- Few-shot learning scenarios
### Evaluation Scripts
```python
# Evaluate model performance
python eval.py --model_path ./checkpoints/best_model.pt --eval_tasks ["perplexity", "accuracy"]
```
## 🛠️ Advanced Techniques
### Mixture of Experts (MoE)
- Understanding sparse models
- Router network design
- Load balancing strategies
### LoRA (Low-Rank Adaptation)
- Parameter-efficient fine-tuning
- Adapter modules implementation
- Multi-task LoRA setups
### DPO (Direct Preference Optimization)
- Human feedback integration
- Preference learning techniques
- Alignment strategies
## 🎓 Community Resources
### Research Papers
- **GPT Architecture**: "Attention Is All You Need"
- **Parameter-Efficient Fine-tuning**: LoRA and related methods
- **Small Model Optimization**: Techniques for efficient training
### Video Tutorials
- YouTube: MiniMind training walkthroughs
- Bilibili: Chinese language tutorials
- Conference talks and presentations
### Discussion Forums
- GitHub Discussions: https://github.com/jingyaogong/minimind/discussions
- Issues tracker for Q&A
- Community Discord/Slack channels
## ❓ Frequently Asked Questions
**Q: Can I run MiniMind on Google Colab?**
A: Yes! MiniMind is optimized to run on free tier GPUs. Check the examples folder for Colab notebooks.
**Q: What's the minimum GPU requirement?**
A: You can train on NVIDIA GPUs with 8GB+ VRAM. For inference, even CPUs work with quantization.
**Q: How do I add my own dataset?**
A: Follow the data preparation guide in docs/data_prep.md. Convert your text to the required format.
**Q: Can I use MiniMind for production?**
A: Yes, under Apache 2.0 license. Consider additional safety checks and alignments for production use.
## 📦 Related Projects
- **nanoGPT**: Minimal GPT implementation by Andrej Karpathy
- **minGPT**: Educational GPT codebase
- **GPT-2 from scratch**: Complete implementation tutorials
## 🔗 Useful Links
- **Hugging Face Models**: Pre-trained checkpoints
- **Datasets**: Common training corpora
- **Benchmarks**: Performance comparisons
## 📝 Contributing
Want to add more resources? Please:
1. Fork the repository
2. Add your resource with description
3. Submit a pull request
4. Follow the contribution guidelines
## 💬 Community
- **GitHub Issues**: Bug reports and feature requests
- **Discussions**: General Q&A and ideas
- **Pull Requests**: Code contributions welcome!
---
**Last Updated**: October 2025
**Maintainers**: MiniMind Community
**License**: Apache-2.0
*This resource collection is community-driven. Contributions are welcome!*