import argparse import json import os import sys __package__ = "scripts" sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import time import torch import warnings import uvicorn from threading import Thread from queue import Queue from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer from model.model_minimind import MiniMindConfig, MiniMindForCausalLM from model.model_lora import apply_lora, load_lora warnings.filterwarnings('ignore') app = FastAPI() def init_model(args): tokenizer = AutoTokenizer.from_pretrained(args.load_from) if 'model' in args.load_from: moe_suffix = '_moe' if args.use_moe else '' ckp = f'../{args.save_dir}/{args.weight}_{args.hidden_size}{moe_suffix}.pth' model = MiniMindForCausalLM(MiniMindConfig( hidden_size=args.hidden_size, num_hidden_layers=args.num_hidden_layers, max_seq_len=args.max_seq_len, use_moe=bool(args.use_moe), inference_rope_scaling=args.inference_rope_scaling )) model.load_state_dict(torch.load(ckp, map_location=device), strict=True) if args.lora_weight != 'None': apply_lora(model) load_lora(model, f'../{args.save_dir}/lora/{args.lora_weight}_{args.hidden_size}.pth') else: model = AutoModelForCausalLM.from_pretrained(args.load_from, trust_remote_code=True) print(f'MiniMind模型参数量: {sum(p.numel() for p in model.parameters()) / 1e6:.2f} M(illion)') return model.eval().to(device), tokenizer class ChatRequest(BaseModel): model: str messages: list temperature: float = 0.7 top_p: float = 0.92 max_tokens: int = 8192 stream: bool = False tools: list = [] class CustomStreamer(TextStreamer): def __init__(self, tokenizer, queue): super().__init__(tokenizer, skip_prompt=True, skip_special_tokens=True) self.queue = queue self.tokenizer = tokenizer def on_finalized_text(self, text: str, stream_end: bool = False): self.queue.put(text) if stream_end: self.queue.put(None) def generate_stream_response(messages, temperature, top_p, max_tokens): try: new_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)[-max_tokens:] inputs = tokenizer(new_prompt, return_tensors="pt", truncation=True).to(device) queue = Queue() streamer = CustomStreamer(tokenizer, queue) def _generate(): model.generate( inputs.input_ids, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, attention_mask=inputs.attention_mask, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, streamer=streamer ) Thread(target=_generate).start() while True: text = queue.get() if text is None: yield json.dumps({ "choices": [{ "delta": {}, "finish_reason": "stop" }] }, ensure_ascii=False) break yield json.dumps({ "choices": [{"delta": {"content": text}}] }, ensure_ascii=False) except Exception as e: yield json.dumps({"error": str(e)}) @app.post("/v1/chat/completions") async def chat_completions(request: ChatRequest): try: if request.stream: return StreamingResponse( (f"data: {chunk}\n\n" for chunk in generate_stream_response( messages=request.messages, temperature=request.temperature, top_p=request.top_p, max_tokens=request.max_tokens )), media_type="text/event-stream" ) else: new_prompt = tokenizer.apply_chat_template( request.messages, tokenize=False, add_generation_prompt=True )[-request.max_tokens:] inputs = tokenizer(new_prompt, return_tensors="pt", truncation=True).to(device) with torch.no_grad(): generated_ids = model.generate( inputs["input_ids"], max_length=inputs["input_ids"].shape[1] + request.max_tokens, do_sample=True, attention_mask=inputs["attention_mask"], pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, top_p=request.top_p, temperature=request.temperature ) answer = tokenizer.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True) return { "id": f"chatcmpl-{int(time.time())}", "object": "chat.completion", "created": int(time.time()), "model": "minimind", "choices": [ { "index": 0, "message": {"role": "assistant", "content": answer}, "finish_reason": "stop" } ] } except Exception as e: raise HTTPException(status_code=500, detail=str(e)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Server for MiniMind") parser.add_argument('--load_from', default='../model', type=str, help="模型加载路径(model=原生torch权重,其他路径=transformers格式)") parser.add_argument('--save_dir', default='out', type=str, help="模型权重目录") parser.add_argument('--weight', default='full_sft', type=str, help="权重名称前缀(pretrain, full_sft, dpo, reason, ppo_actor, grpo, spo)") parser.add_argument('--lora_weight', default='None', type=str, help="LoRA权重名称(None表示不使用,可选:lora_identity, lora_medical)") parser.add_argument('--hidden_size', default=512, type=int, help="隐藏层维度(512=Small-26M, 640=MoE-145M, 768=Base-104M)") parser.add_argument('--num_hidden_layers', default=8, type=int, help="隐藏层数量(Small/MoE=8, Base=16)") parser.add_argument('--max_seq_len', default=8192, type=int, help="最大序列长度") parser.add_argument('--use_moe', default=0, type=int, choices=[0, 1], help="是否使用MoE架构(0=否,1=是)") parser.add_argument('--inference_rope_scaling', default=False, action='store_true', help="启用RoPE位置编码外推(4倍,仅解决位置编码问题)") parser.add_argument('--device', default='cuda' if torch.cuda.is_available() else 'cpu', type=str, help="运行设备") args = parser.parse_args() device = args.device model, tokenizer = init_model(args) uvicorn.run(app, host="0.0.0.0", port=8998)