minimind/scripts/serve_openai_api.py
2025-10-30 10:48:31 +08:00

178 lines
7.0 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import json
import os
import sys
__package__ = "scripts"
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import time
import torch
import warnings
import uvicorn
from threading import Thread
from queue import Queue
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
from model.model_minimind import MiniMindConfig, MiniMindForCausalLM
from model.model_lora import apply_lora, load_lora
warnings.filterwarnings('ignore')
app = FastAPI()
def init_model(args):
tokenizer = AutoTokenizer.from_pretrained(args.load_from)
if 'model' in args.load_from:
moe_suffix = '_moe' if args.use_moe else ''
ckp = f'../{args.save_dir}/{args.weight}_{args.hidden_size}{moe_suffix}.pth'
model = MiniMindForCausalLM(MiniMindConfig(
hidden_size=args.hidden_size,
num_hidden_layers=args.num_hidden_layers,
max_seq_len=args.max_seq_len,
use_moe=bool(args.use_moe),
inference_rope_scaling=args.inference_rope_scaling
))
model.load_state_dict(torch.load(ckp, map_location=device), strict=True)
if args.lora_weight != 'None':
apply_lora(model)
load_lora(model, f'../{args.save_dir}/lora/{args.lora_weight}_{args.hidden_size}.pth')
else:
model = AutoModelForCausalLM.from_pretrained(args.load_from, trust_remote_code=True)
print(f'MiniMind模型参数量: {sum(p.numel() for p in model.parameters()) / 1e6:.2f} M(illion)')
return model.eval().to(device), tokenizer
class ChatRequest(BaseModel):
model: str
messages: list
temperature: float = 0.7
top_p: float = 0.92
max_tokens: int = 8192
stream: bool = False
tools: list = []
class CustomStreamer(TextStreamer):
def __init__(self, tokenizer, queue):
super().__init__(tokenizer, skip_prompt=True, skip_special_tokens=True)
self.queue = queue
self.tokenizer = tokenizer
def on_finalized_text(self, text: str, stream_end: bool = False):
self.queue.put(text)
if stream_end:
self.queue.put(None)
def generate_stream_response(messages, temperature, top_p, max_tokens):
try:
new_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)[-max_tokens:]
inputs = tokenizer(new_prompt, return_tensors="pt", truncation=True).to(device)
queue = Queue()
streamer = CustomStreamer(tokenizer, queue)
def _generate():
model.generate(
inputs.input_ids,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
attention_mask=inputs.attention_mask,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer
)
Thread(target=_generate).start()
while True:
text = queue.get()
if text is None:
yield json.dumps({
"choices": [{
"delta": {},
"finish_reason": "stop"
}]
}, ensure_ascii=False)
break
yield json.dumps({
"choices": [{"delta": {"content": text}}]
}, ensure_ascii=False)
except Exception as e:
yield json.dumps({"error": str(e)})
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatRequest):
try:
if request.stream:
return StreamingResponse(
(f"data: {chunk}\n\n" for chunk in generate_stream_response(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens
)),
media_type="text/event-stream"
)
else:
new_prompt = tokenizer.apply_chat_template(
request.messages,
tokenize=False,
add_generation_prompt=True
)[-request.max_tokens:]
inputs = tokenizer(new_prompt, return_tensors="pt", truncation=True).to(device)
with torch.no_grad():
generated_ids = model.generate(
inputs["input_ids"],
max_length=inputs["input_ids"].shape[1] + request.max_tokens,
do_sample=True,
attention_mask=inputs["attention_mask"],
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
top_p=request.top_p,
temperature=request.temperature
)
answer = tokenizer.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
return {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion",
"created": int(time.time()),
"model": "minimind",
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": answer},
"finish_reason": "stop"
}
]
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Server for MiniMind")
parser.add_argument('--load_from', default='../model', type=str, help="模型加载路径model=原生torch权重其他路径=transformers格式")
parser.add_argument('--save_dir', default='out', type=str, help="模型权重目录")
parser.add_argument('--weight', default='full_sft', type=str, help="权重名称前缀pretrain, full_sft, dpo, reason, ppo_actor, grpo, spo")
parser.add_argument('--lora_weight', default='None', type=str, help="LoRA权重名称None表示不使用可选lora_identity, lora_medical")
parser.add_argument('--hidden_size', default=512, type=int, help="隐藏层维度512=Small-26M, 640=MoE-145M, 768=Base-104M")
parser.add_argument('--num_hidden_layers', default=8, type=int, help="隐藏层数量Small/MoE=8, Base=16")
parser.add_argument('--max_seq_len', default=8192, type=int, help="最大序列长度")
parser.add_argument('--use_moe', default=0, type=int, choices=[0, 1], help="是否使用MoE架构0=否1=是)")
parser.add_argument('--inference_rope_scaling', default=False, action='store_true', help="启用RoPE位置编码外推4倍仅解决位置编码问题")
parser.add_argument('--device', default='cuda' if torch.cuda.is_available() else 'cpu', type=str, help="运行设备")
args = parser.parse_args()
device = args.device
model, tokenizer = init_model(args)
uvicorn.run(app, host="0.0.0.0", port=8998)