mirror of
https://github.com/jingyaogong/minimind.git
synced 2026-01-13 19:57:20 +08:00
231 lines
12 KiB
Python
231 lines
12 KiB
Python
import os
|
||
import sys
|
||
|
||
__package__ = "trainer"
|
||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
||
|
||
import argparse
|
||
import time
|
||
import warnings
|
||
import torch
|
||
import torch.nn.functional as F
|
||
import torch.distributed as dist
|
||
from contextlib import nullcontext
|
||
from torch import optim
|
||
from torch.nn.parallel import DistributedDataParallel
|
||
from torch.utils.data import DataLoader, DistributedSampler
|
||
from model.model_minimind import MiniMindConfig
|
||
from dataset.lm_dataset import SFTDataset
|
||
from trainer.trainer_utils import get_lr, Logger, is_main_process, lm_checkpoint, init_distributed_mode, setup_seed, init_model, SkipBatchSampler
|
||
|
||
warnings.filterwarnings('ignore')
|
||
|
||
|
||
def distillation_loss(student_logits, teacher_logits, temperature=1.0, reduction='batchmean'):
|
||
with torch.no_grad():
|
||
teacher_probs = F.softmax(teacher_logits / temperature, dim=-1).detach()
|
||
|
||
student_log_probs = F.log_softmax(student_logits / temperature, dim=-1)
|
||
|
||
kl = F.kl_div(
|
||
student_log_probs,
|
||
teacher_probs,
|
||
reduction=reduction
|
||
)
|
||
return (temperature ** 2) * kl
|
||
|
||
|
||
def train_epoch(epoch, loader, iters, teacher_model, lm_config_student, start_step=0, wandb=None, alpha=0.0, temperature=1.0):
|
||
start_time = time.time()
|
||
|
||
if teacher_model is not None:
|
||
teacher_model.eval()
|
||
teacher_model.requires_grad_(False)
|
||
|
||
for step, (X, Y, loss_mask) in enumerate(loader, start=start_step + 1):
|
||
X = X.to(args.device)
|
||
Y = Y.to(args.device)
|
||
loss_mask = loss_mask.to(args.device)
|
||
lr = get_lr(epoch * iters + step, args.epochs * iters, args.learning_rate)
|
||
for param_group in optimizer.param_groups:
|
||
param_group['lr'] = lr
|
||
|
||
# 前向传播(学生模型)
|
||
with autocast_ctx:
|
||
res = model(X)
|
||
student_logits = res.logits
|
||
|
||
# 教师模型前向传播(只在eval & no_grad)
|
||
if teacher_model is not None:
|
||
with torch.no_grad():
|
||
teacher_logits = teacher_model(X).logits
|
||
vocab_size_student = student_logits.size(-1)
|
||
teacher_logits = teacher_logits[..., :vocab_size_student]
|
||
|
||
# ========== 计算损失 ==========
|
||
# 1) Ground-Truth CE Loss
|
||
loss_mask_flat = loss_mask.view(-1)
|
||
ce_loss = F.cross_entropy(
|
||
student_logits.view(-1, student_logits.size(-1)),
|
||
Y.view(-1),
|
||
ignore_index=0,
|
||
reduction='none'
|
||
)
|
||
ce_loss_raw = torch.sum(ce_loss * loss_mask_flat) / loss_mask_flat.sum()
|
||
if lm_config_student.use_moe: ce_loss = ce_loss_raw + res.aux_loss
|
||
else: ce_loss = ce_loss_raw
|
||
|
||
# 2) Distillation Loss
|
||
if teacher_model is not None:
|
||
distill_loss = distillation_loss(
|
||
student_logits.view(-1, student_logits.size(-1))[loss_mask_flat == 1],
|
||
teacher_logits.view(-1, teacher_logits.size(-1))[loss_mask_flat == 1],
|
||
temperature=temperature
|
||
)
|
||
else:
|
||
distill_loss = torch.tensor(0.0, device=args.device)
|
||
|
||
# 3) 总损失 = alpha * CE + (1-alpha) * Distill
|
||
loss = (alpha * ce_loss + (1 - alpha) * distill_loss) / args.accumulation_steps
|
||
|
||
scaler.scale(loss).backward()
|
||
|
||
if (step + 1) % args.accumulation_steps == 0:
|
||
scaler.unscale_(optimizer)
|
||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||
scaler.step(optimizer)
|
||
scaler.update()
|
||
optimizer.zero_grad(set_to_none=True)
|
||
|
||
if step % args.log_interval == 0 or step == iters - 1:
|
||
spend_time = time.time() - start_time
|
||
current_loss = loss.item() * args.accumulation_steps
|
||
current_ce_loss = ce_loss_raw.item()
|
||
current_aux_loss = res.aux_loss.item() if lm_config_student.use_moe else 0.0
|
||
current_lr = optimizer.param_groups[-1]['lr']
|
||
eta_min = spend_time / (step + 1) * iters // 60 - spend_time // 60
|
||
|
||
Logger(f'Epoch:[{epoch + 1}/{args.epochs}]({step}/{iters}), loss: {current_loss:.4f}, ce: {current_ce_loss:.4f}, aux_loss: {current_aux_loss:.4f}, distill: {distill_loss.item():.4f}, learning_rate: {current_lr:.8f}, epoch_time: {eta_min:.3f}min')
|
||
|
||
if wandb:
|
||
wandb.log({
|
||
"loss": current_loss,
|
||
"ce_loss": current_ce_loss,
|
||
"aux_loss": current_aux_loss,
|
||
"distill_loss": distill_loss.item() if teacher_model is not None else 0.0,
|
||
"learning_rate": current_lr,
|
||
"epoch_time": eta_min
|
||
})
|
||
|
||
if (step % args.save_interval == 0 or step == iters - 1) and is_main_process():
|
||
model.eval()
|
||
moe_suffix = '_moe' if lm_config_student.use_moe else ''
|
||
ckp = f'{args.save_dir}/{args.save_weight}_{lm_config_student.hidden_size}{moe_suffix}.pth'
|
||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||
state_dict = model.module.state_dict()
|
||
else:
|
||
state_dict = model.state_dict()
|
||
state_dict = {k: v.half().cpu() for k, v in state_dict.items()}
|
||
torch.save(state_dict, ckp)
|
||
lm_checkpoint(lm_config_student, weight=args.save_weight, model=model, optimizer=optimizer, scaler=scaler, epoch=epoch, step=step, wandb=wandb, save_dir='../checkpoints')
|
||
model.train()
|
||
del state_dict
|
||
|
||
del X, Y, loss_mask, res, student_logits, teacher_logits, ce_loss, distill_loss, loss
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(description="MiniMind Knowledge Distillation")
|
||
parser.add_argument("--save_dir", type=str, default="../out", help="模型保存目录")
|
||
parser.add_argument('--save_weight', default='full_dist', type=str, help="保存权重的前缀名")
|
||
parser.add_argument("--epochs", type=int, default=6, help="训练轮数")
|
||
parser.add_argument("--batch_size", type=int, default=32, help="batch size")
|
||
parser.add_argument("--learning_rate", type=float, default=5e-6, help="初始学习率")
|
||
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="训练设备")
|
||
parser.add_argument("--dtype", type=str, default="bfloat16", help="混合精度类型")
|
||
parser.add_argument("--num_workers", type=int, default=8, help="数据加载线程数")
|
||
parser.add_argument("--accumulation_steps", type=int, default=1, help="梯度累积步数")
|
||
parser.add_argument("--grad_clip", type=float, default=1.0, help="梯度裁剪阈值")
|
||
parser.add_argument("--log_interval", type=int, default=100, help="日志打印间隔")
|
||
parser.add_argument("--save_interval", type=int, default=100, help="模型保存间隔")
|
||
parser.add_argument("--max_seq_len", type=int, default=340, help="训练的最大截断长度(中文1token≈1.5~1.7字符)")
|
||
parser.add_argument("--data_path", type=str, default="../dataset/sft_mini_512.jsonl", help="训练数据路径")
|
||
parser.add_argument('--student_hidden_size', default=512, type=int, help="学生模型隐藏层维度")
|
||
parser.add_argument('--student_num_layers', default=8, type=int, help="学生模型隐藏层数量")
|
||
parser.add_argument('--teacher_hidden_size', default=768, type=int, help="教师模型隐藏层维度")
|
||
parser.add_argument('--teacher_num_layers', default=16, type=int, help="教师模型隐藏层数量")
|
||
parser.add_argument('--use_moe', default=0, type=int, choices=[0, 1], help="是否使用MoE架构(0=否,1=是)")
|
||
parser.add_argument('--from_student_weight', default='full_sft', type=str, help="学生模型基于哪个权重")
|
||
parser.add_argument('--from_teacher_weight', default='full_sft', type=str, help="教师模型基于哪个权重")
|
||
parser.add_argument('--from_resume', default=0, type=int, choices=[0, 1], help="是否自动检测&续训(0=否,1=是)")
|
||
parser.add_argument('--alpha', default=0.5, type=float, help="CE损失权重,总损失=alpha*CE+(1-alpha)*KL")
|
||
parser.add_argument('--temperature', default=1.5, type=float, help="蒸馏温度(推荐范围1.0-2.0)")
|
||
parser.add_argument("--use_wandb", action="store_true", help="是否使用wandb")
|
||
parser.add_argument("--wandb_project", type=str, default="MiniMind-Distillation", help="wandb项目名")
|
||
args = parser.parse_args()
|
||
|
||
# ========== 1. 初始化环境和随机种子 ==========
|
||
local_rank = init_distributed_mode()
|
||
if dist.is_initialized(): args.device = f"cuda:{local_rank}"
|
||
setup_seed(42 + (dist.get_rank() if dist.is_initialized() else 0))
|
||
|
||
# ========== 2. 配置目录、模型参数、检查ckp ==========
|
||
os.makedirs(args.save_dir, exist_ok=True)
|
||
lm_config_student = MiniMindConfig(hidden_size=args.student_hidden_size, num_hidden_layers=args.student_num_layers, use_moe=bool(args.use_moe))
|
||
lm_config_teacher = MiniMindConfig(hidden_size=args.teacher_hidden_size, num_hidden_layers=args.teacher_num_layers, use_moe=bool(args.use_moe))
|
||
ckp_data = lm_checkpoint(lm_config_student, weight=args.save_weight, save_dir='../checkpoints') if args.from_resume==1 else None
|
||
|
||
# ========== 3. 设置混合精度 ==========
|
||
device_type = "cuda" if "cuda" in args.device else "cpu"
|
||
dtype = torch.bfloat16 if args.dtype == "bfloat16" else torch.float16
|
||
autocast_ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast(dtype=dtype)
|
||
|
||
# ========== 4. 配wandb ==========
|
||
wandb = None
|
||
if args.use_wandb and is_main_process():
|
||
import swanlab as wandb
|
||
wandb_id = ckp_data.get('wandb_id') if ckp_data else None
|
||
resume = 'must' if wandb_id else None
|
||
wandb_run_name = f"MiniMind-Distill-S{args.student_hidden_size}T{args.teacher_hidden_size}-Epoch-{args.epochs}-BS-{args.batch_size}-LR-{args.learning_rate}"
|
||
wandb.init(project=args.wandb_project, name=wandb_run_name, id=wandb_id, resume=resume)
|
||
|
||
# ========== 5. 定义学生和教师模型 ==========
|
||
model, tokenizer = init_model(lm_config_student, args.from_student_weight, device=args.device)
|
||
Logger(f'学生模型总参数量:{sum(p.numel() for p in model.parameters()) / 1e6:.3f} M')
|
||
teacher_model, _ = init_model(lm_config_teacher, args.from_teacher_weight, device=args.device)
|
||
teacher_model.eval()
|
||
teacher_model.requires_grad_(False)
|
||
Logger(f'教师模型总参数量:{sum(p.numel() for p in teacher_model.parameters()) / 1e6:.3f} M')
|
||
train_ds = SFTDataset(args.data_path, tokenizer, max_length=args.max_seq_len)
|
||
train_sampler = DistributedSampler(train_ds) if dist.is_initialized() else None
|
||
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == 'float16'))
|
||
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
|
||
|
||
# ========== 6. 从ckp恢复状态 ==========
|
||
start_epoch, start_step = 0, 0
|
||
if ckp_data:
|
||
model.load_state_dict(ckp_data['model'])
|
||
optimizer.load_state_dict(ckp_data['optimizer'])
|
||
scaler.load_state_dict(ckp_data['scaler'])
|
||
start_epoch = ckp_data['epoch']
|
||
start_step = ckp_data.get('step', 0)
|
||
|
||
# ========== 7. DDP包模型 ==========
|
||
if dist.is_initialized():
|
||
model._ddp_params_and_buffers_to_ignore = {"freqs_cos", "freqs_sin"}
|
||
model = DistributedDataParallel(model, device_ids=[local_rank])
|
||
|
||
# ========== 8. 开始训练 ==========
|
||
for epoch in range(start_epoch, args.epochs):
|
||
train_sampler and train_sampler.set_epoch(epoch)
|
||
if epoch == start_epoch and start_step > 0: # 第一个epoch且存在检查点
|
||
batch_sampler = SkipBatchSampler(train_sampler or range(len(train_ds)), args.batch_size, start_step + 1)
|
||
loader = DataLoader(train_ds, batch_sampler=batch_sampler, num_workers=args.num_workers, pin_memory=True)
|
||
Logger(f'Epoch [{epoch + 1}/{args.epochs}]: 跳过前{start_step}个step,从step {start_step + 1}开始')
|
||
train_epoch(epoch, loader, len(loader) + start_step + 1, teacher_model, lm_config_student, start_step, wandb, args.alpha, args.temperature)
|
||
else: # 默认从头开始
|
||
loader = DataLoader(train_ds, batch_size=args.batch_size, shuffle=(train_sampler is None), sampler=train_sampler, num_workers=args.num_workers, pin_memory=True)
|
||
train_epoch(epoch, loader, len(loader), teacher_model, lm_config_student, 0, wandb, args.alpha, args.temperature)
|
||
|
||
# ========== 9. 清理分布进程 ==========
|
||
if dist.is_initialized(): dist.destroy_process_group() |