mirror of
https://github.com/jingyaogong/minimind.git
synced 2026-01-13 19:57:20 +08:00
349 lines
19 KiB
Python
Executable File
349 lines
19 KiB
Python
Executable File
import os
|
||
import sys
|
||
|
||
__package__ = "trainer"
|
||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
||
|
||
import argparse
|
||
import re
|
||
import gc
|
||
import warnings
|
||
import torch
|
||
import torch.distributed as dist
|
||
from transformers import AutoTokenizer
|
||
from contextlib import nullcontext
|
||
from torch import optim
|
||
from torch.nn.parallel import DistributedDataParallel
|
||
from torch.utils.data import DataLoader, DistributedSampler
|
||
from torch.optim.lr_scheduler import CosineAnnealingLR
|
||
from transformers import AutoModel
|
||
from model.model_minimind import MiniMindConfig, MiniMindForCausalLM
|
||
from dataset.lm_dataset import RLAIFDataset
|
||
from trainer.trainer_utils import Logger, is_main_process, lm_checkpoint, init_distributed_mode, setup_seed, SkipBatchSampler, init_model
|
||
|
||
warnings.filterwarnings('ignore')
|
||
|
||
|
||
class AutoAdaptiveValueTracker:
|
||
"""SPO自适应价值追踪器"""
|
||
def __init__(self, rho_mode='kl', rho_const=0.9, D_half=0.06, clip_lower=0.5, clip_upper=0.96):
|
||
self.rho_mode = rho_mode
|
||
self.rho_const = rho_const
|
||
self.D_half = D_half
|
||
self.clip_lower = clip_lower
|
||
self.clip_upper = clip_upper
|
||
N_init = 1.0 / (1.0 - self.clip_lower)
|
||
self.alpha = 0.5 * N_init
|
||
self.beta = 0.5 * N_init
|
||
self.old_mean_logprob = None
|
||
|
||
def get_baselines(self, batch_size):
|
||
baseline = self.alpha / (self.alpha + self.beta)
|
||
return torch.full((batch_size,), baseline, dtype=torch.float32)
|
||
|
||
def compute_rho(self, cur_mean_logprob):
|
||
if self.rho_mode == 'constant':
|
||
return self.rho_const
|
||
if self.old_mean_logprob is None:
|
||
return self.rho_const
|
||
kl = abs(self.old_mean_logprob - cur_mean_logprob)
|
||
rho = 2 ** (-kl / self.D_half)
|
||
return max(min(rho, self.clip_upper), self.clip_lower)
|
||
|
||
def update(self, rewards, cur_logprobs=None, response_masks=None):
|
||
if cur_logprobs is not None and response_masks is not None:
|
||
mean_logprob = ((cur_logprobs * response_masks).sum() / response_masks.sum()).item()
|
||
rho = self.compute_rho(mean_logprob)
|
||
self.old_mean_logprob = mean_logprob
|
||
else:
|
||
rho = self.rho_const
|
||
|
||
scale = 3.0
|
||
normalized_rewards = (rewards + scale) / (2 * scale)
|
||
avg_normalized_reward = normalized_rewards.mean().item()
|
||
self.alpha = rho * self.alpha + avg_normalized_reward
|
||
self.beta = rho * self.beta + (1 - avg_normalized_reward)
|
||
return rho
|
||
|
||
|
||
def calculate_rewards(prompts, responses, reward_model, reward_tokenizer):
|
||
"""整合所有奖励函数计算总奖励"""
|
||
def reasoning_model_reward(rewards):
|
||
pattern = r"^<think>\n.*?\n</think>\n<answer>\n.*?\n</answer>$"
|
||
pattern2 = r"^<think>\n.*?\n</think>\n\n<answer>\n.*?\n</answer>$"
|
||
matches_pattern = [re.match(pattern, response, re.S) for response in responses]
|
||
matches_pattern2 = [re.match(pattern2, response, re.S) for response in responses]
|
||
|
||
format_rewards = []
|
||
for match_pattern, match_pattern2 in zip(matches_pattern, matches_pattern2):
|
||
if match_pattern or match_pattern2:
|
||
format_rewards.append(0.5)
|
||
else:
|
||
format_rewards.append(0.0)
|
||
rewards += torch.tensor(format_rewards, device=args.device)
|
||
|
||
def mark_num(text):
|
||
reward = 0
|
||
if text.count("<think>") == 1: reward += 0.25
|
||
if text.count("</think>") == 1: reward += 0.25
|
||
if text.count("<answer>") == 1: reward += 0.25
|
||
if text.count("</answer>") == 1: reward += 0.25
|
||
return reward
|
||
|
||
mark_rewards = [mark_num(response) for response in responses]
|
||
rewards += torch.tensor(mark_rewards, device=args.device)
|
||
return rewards
|
||
|
||
rewards = torch.zeros(len(responses), device=args.device)
|
||
if args.reasoning == 1:
|
||
rewards = reasoning_model_reward(rewards)
|
||
|
||
with torch.no_grad():
|
||
reward_model_scores = []
|
||
scale = 3.0
|
||
|
||
for i, (prompt, response) in enumerate(zip(prompts, responses)):
|
||
pattern = r"<\|im_start\|>(system|user|assistant)\s+(.*?)<\|im_end\|>"
|
||
matches = re.findall(pattern, prompt, re.DOTALL)
|
||
messages = [{"role": role, "content": content.strip()} for role, content in matches]
|
||
|
||
tmp_chat = messages + [{"role": "assistant", "content": response}]
|
||
score = reward_model.get_score(reward_tokenizer, tmp_chat)
|
||
score = max(min(score, scale), -scale)
|
||
|
||
if args.reasoning == 1:
|
||
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
|
||
if answer_match:
|
||
answer_content = answer_match.group(1).strip()
|
||
tmp_chat = messages + [{"role": "assistant", "content": answer_content}]
|
||
answer_score = reward_model.get_score(reward_tokenizer, tmp_chat)
|
||
answer_score = max(min(answer_score, scale), -scale)
|
||
score = score * 0.4 + answer_score * 0.6
|
||
|
||
reward_model_scores.append(score)
|
||
|
||
reward_model_scores = torch.tensor(reward_model_scores, device=args.device)
|
||
rewards += reward_model_scores
|
||
|
||
return rewards
|
||
|
||
|
||
def spo_train_epoch(epoch, loader, iters, ref_model, reward_model, reward_tokenizer, value_tracker, start_step=0, wandb=None):
|
||
for step, batch in enumerate(loader, start=start_step + 1):
|
||
prompts = batch['prompt'] # list[str], length B
|
||
prompt_inputs = tokenizer(prompts, return_tensors="pt", padding=True, return_token_type_ids=False,
|
||
padding_side="left", add_special_tokens=False).to(args.device) # input_ids: [B, P], attention_mask: [B, P]
|
||
if args.max_seq_len:
|
||
prompt_inputs["input_ids"] = prompt_inputs["input_ids"][:, -args.max_seq_len:]
|
||
prompt_inputs["attention_mask"] = prompt_inputs["attention_mask"][:, -args.max_seq_len:]
|
||
|
||
with torch.no_grad():
|
||
# DDP 模型需要使用 .module 访问 generate 方法
|
||
model_for_gen = model.module if isinstance(model, DistributedDataParallel) else model
|
||
outputs = model_for_gen.generate(
|
||
**prompt_inputs, max_new_tokens=args.max_gen_len, do_sample=True, temperature=0.8,
|
||
num_return_sequences=1, pad_token_id=tokenizer.pad_token_id) # [B, P+R]
|
||
|
||
completion_ids = outputs[:, prompt_inputs["input_ids"].size(1):] # [B, R]
|
||
|
||
def get_per_token_logps(mdl, input_ids, n_keep):
|
||
input_ids = input_ids.detach().clone() if input_ids.is_inference() else input_ids
|
||
logits = mdl(input_ids, logits_to_keep=n_keep + 1).logits[:, :-1, :]
|
||
per_token_logps = []
|
||
for logits_row, ids_row in zip(logits, input_ids[:, -n_keep:]):
|
||
ids_row = ids_row.detach().clone() if ids_row.is_inference() else ids_row
|
||
per_token_logps.append(torch.gather(logits_row.log_softmax(dim=-1), 1, ids_row.unsqueeze(1)).squeeze(1))
|
||
return torch.stack(per_token_logps)
|
||
|
||
with autocast_ctx:
|
||
per_token_logps = get_per_token_logps(model, outputs, completion_ids.size(1)) # [B, R]
|
||
res = model(outputs) if lm_config.use_moe else None
|
||
aux_loss = res.aux_loss if res is not None else torch.tensor(0.0, device=args.device)
|
||
|
||
with torch.no_grad():
|
||
ref_per_token_logps = get_per_token_logps(ref_model, outputs, completion_ids.size(1)) # [B, R]
|
||
|
||
completions = tokenizer.batch_decode(completion_ids, skip_special_tokens=True) # list[str], length B
|
||
rewards = calculate_rewards(prompts, completions, reward_model, reward_tokenizer).to(args.device) # [B]
|
||
|
||
baselines = value_tracker.get_baselines(len(prompts)).to(args.device) # [B]
|
||
|
||
scale = 3.0
|
||
# Un-normalize baselines to be in the same scale as raw rewards [-3, 3]
|
||
unnormalized_baselines = baselines * (2 * scale) - scale # [B]
|
||
advantages = rewards - unnormalized_baselines # [B]
|
||
|
||
# 直接使用 baseline 提供的优势估计,只做裁剪防止梯度爆炸。不再做 batch 内归一化,因为 baseline 已经提供了跨 batch 的稳定基线
|
||
advantages = advantages.clamp(-5.0, 5.0)
|
||
|
||
is_eos = completion_ids == tokenizer.eos_token_id # [B, R]
|
||
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=args.device) # [B]
|
||
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
|
||
completion_mask = (torch.arange(is_eos.size(1), device=args.device).expand(is_eos.size(0), -1) <= eos_idx.unsqueeze(1)).int() # [B, R]
|
||
|
||
kl_div = ref_per_token_logps - per_token_logps # [B, R]
|
||
per_token_kl = torch.exp(kl_div) - kl_div - 1 # [B, R]
|
||
per_token_loss = -per_token_logps * advantages.unsqueeze(1) + args.beta * per_token_kl # [B, R]
|
||
policy_loss = ((per_token_loss * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
|
||
loss = (policy_loss + aux_loss) / args.accumulation_steps # scalar
|
||
loss.backward()
|
||
|
||
response_masks = completion_mask.float() # [B, R]
|
||
rho = value_tracker.update(rewards, per_token_logps.detach(), response_masks)
|
||
|
||
if (step + 1) % args.accumulation_steps == 0:
|
||
if args.grad_clip > 0:
|
||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||
optimizer.step()
|
||
scheduler.step()
|
||
optimizer.zero_grad()
|
||
|
||
if step % args.log_interval == 0 or step == iters:
|
||
policy_loss_val = loss.item() * args.accumulation_steps
|
||
current_aux_loss = aux_loss.item()
|
||
avg_reward_val = rewards.mean().item()
|
||
avg_len_val = completion_mask.sum(dim=1).float().mean().item()
|
||
kl_val = ((per_token_kl * completion_mask).sum() / (completion_mask.sum() + 1e-8)).item()
|
||
avg_baseline_val = baselines.mean().item()
|
||
current_lr = optimizer.param_groups[0]['lr']
|
||
|
||
Logger(f'Epoch:[{epoch + 1}/{args.epochs}]({step}/{iters}), '
|
||
f'Actor Loss: {policy_loss_val:.4f}, Aux Loss: {current_aux_loss:.4f}, Reward: {avg_reward_val:.4f}, '
|
||
f'Baseline: {avg_baseline_val:.4f}, KL: {kl_val:.4f}, Rho: {rho:.4f}, '
|
||
f'Avg Response Len: {avg_len_val:.2f}, Learning Rate: {current_lr:.8f}')
|
||
|
||
if wandb and is_main_process():
|
||
wandb.log({
|
||
"policy_loss": policy_loss_val,
|
||
"aux_loss": current_aux_loss,
|
||
"reward": avg_reward_val,
|
||
"kl": kl_val,
|
||
"rho": float(rho),
|
||
"baseline": avg_baseline_val,
|
||
"advantages_mean": advantages.mean().item(),
|
||
"learning_rate": current_lr
|
||
})
|
||
|
||
if (step % args.save_interval == 0 or step == iters - 1) and is_main_process():
|
||
model.eval()
|
||
moe_suffix = '_moe' if lm_config.use_moe else ''
|
||
ckp = f'{args.save_dir}/{args.save_weight}_{lm_config.hidden_size}{moe_suffix}.pth'
|
||
state_dict = model.module.state_dict() if isinstance(model, DistributedDataParallel) else model.state_dict()
|
||
torch.save({k: v.half().cpu() for k, v in state_dict.items()}, ckp)
|
||
lm_checkpoint(lm_config, weight=args.save_weight, model=model, optimizer=optimizer,
|
||
epoch=epoch, step=step, wandb=wandb, save_dir='../checkpoints', scheduler=scheduler)
|
||
model.train()
|
||
del state_dict
|
||
|
||
del prompt_inputs, outputs, completion_ids, per_token_logps, ref_per_token_logps
|
||
del completions, rewards, advantages, completion_mask, baselines, response_masks
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(description="MiniMind SPO (Self-Play Optimization)")
|
||
parser.add_argument("--save_dir", type=str, default="../out", help="模型保存目录")
|
||
parser.add_argument('--save_weight', default='spo', type=str, help="保存权重的前缀名")
|
||
parser.add_argument("--epochs", type=int, default=1, help="训练轮数")
|
||
parser.add_argument("--batch_size", type=int, default=2, help="batch size")
|
||
parser.add_argument("--learning_rate", type=float, default=1e-7, help="初始学习率")
|
||
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="训练设备")
|
||
parser.add_argument("--dtype", type=str, default="bfloat16", help="混合精度类型")
|
||
parser.add_argument("--num_workers", type=int, default=8, help="数据加载线程数")
|
||
parser.add_argument("--accumulation_steps", type=int, default=4, help="梯度累积步数")
|
||
parser.add_argument("--grad_clip", type=float, default=1.0, help="梯度裁剪阈值")
|
||
parser.add_argument("--log_interval", type=int, default=1, help="日志打印间隔")
|
||
parser.add_argument("--save_interval", type=int, default=10, help="模型保存间隔")
|
||
parser.add_argument('--hidden_size', default=512, type=int, help="隐藏层维度")
|
||
parser.add_argument('--num_hidden_layers', default=8, type=int, help="隐藏层数量")
|
||
parser.add_argument('--use_moe', default=0, type=int, choices=[0, 1], help="是否使用MoE架构(0=否,1=是)")
|
||
parser.add_argument('--max_seq_len', default=66, type=int, help="Prompt最大长度")
|
||
parser.add_argument("--max_gen_len", type=int, default=1536, help="生成的最大长度")
|
||
parser.add_argument("--data_path", type=str, default="../dataset/rlaif-mini.jsonl", help="RLAIF数据路径")
|
||
parser.add_argument("--beta", type=float, default=0.02, help="KL惩罚系数")
|
||
parser.add_argument("--reasoning", type=int, default=1, choices=[0, 1], help='推理模型类型(0=普通模型,1=推理模型)')
|
||
parser.add_argument("--reward_model_path", type=str, default="../../internlm2-1_8b-reward", help="Reward模型路径")
|
||
parser.add_argument('--from_resume', default=0, type=int, choices=[0, 1], help="是否自动检测&续训(0=否,1=是)")
|
||
parser.add_argument("--use_wandb", action="store_true", help="是否使用wandb")
|
||
parser.add_argument("--wandb_project", type=str, default="MiniMind-SPO", help="wandb项目名")
|
||
args = parser.parse_args()
|
||
|
||
# ========== 1. 初始化环境和随机种子 ==========
|
||
local_rank = init_distributed_mode()
|
||
if dist.is_initialized(): args.device = f"cuda:{local_rank}"
|
||
setup_seed(42 + (dist.get_rank() if dist.is_initialized() else 0))
|
||
|
||
# ========== 2. 配置目录、模型参数、检查ckp ==========
|
||
os.makedirs(args.save_dir, exist_ok=True)
|
||
lm_config = MiniMindConfig(hidden_size=args.hidden_size, num_hidden_layers=args.num_hidden_layers,
|
||
max_seq_len=args.max_seq_len + args.max_gen_len, use_moe=bool(args.use_moe))
|
||
ckp_data = lm_checkpoint(lm_config, weight=args.save_weight, save_dir='../checkpoints') if args.from_resume==1 else None
|
||
|
||
# ========== 3. 设置混合精度 ==========
|
||
device_type = "cuda" if "cuda" in args.device else "cpu"
|
||
dtype = torch.bfloat16 if args.dtype == "bfloat16" else torch.float16
|
||
autocast_ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast(dtype=dtype)
|
||
|
||
# ========== 4. 配wandb ==========
|
||
wandb = None
|
||
if args.use_wandb and is_main_process():
|
||
import swanlab as wandb
|
||
wandb_id = ckp_data.get('wandb_id') if ckp_data else None
|
||
resume = 'must' if wandb_id else None
|
||
wandb_run_name = f"MiniMind-SPO-Epoch-{args.epochs}-BS-{args.batch_size}-LR-{args.learning_rate}"
|
||
wandb.init(project=args.wandb_project, name=wandb_run_name, id=wandb_id, resume=resume)
|
||
|
||
# ========== 5. 初始化模型(Policy, Ref, Reward)和Value Tracker、数据 ==========
|
||
base_weight = "reason" if args.reasoning == 1 else "full_sft"
|
||
# Policy模型
|
||
model, tokenizer = init_model(lm_config, base_weight, device=args.device)
|
||
# Reference模型
|
||
ref_model, _ = init_model(lm_config, base_weight, device=args.device)
|
||
ref_model = ref_model.eval().requires_grad_(False)
|
||
# Reward模型
|
||
reward_model = AutoModel.from_pretrained(
|
||
args.reward_model_path, torch_dtype=torch.float16, trust_remote_code=True
|
||
)
|
||
reward_model = reward_model.to(args.device).eval().requires_grad_(False)
|
||
reward_tokenizer = AutoTokenizer.from_pretrained(args.reward_model_path, trust_remote_code=True)
|
||
# Value Tracker
|
||
value_tracker = AutoAdaptiveValueTracker(rho_mode='kl', rho_const=0.9, D_half=0.06, clip_lower=0.5, clip_upper=0.96)
|
||
|
||
train_ds = RLAIFDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len)
|
||
train_sampler = DistributedSampler(train_ds) if dist.is_initialized() else None
|
||
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
|
||
|
||
loader_for_count = DataLoader(train_ds, batch_size=args.batch_size, sampler=train_sampler)
|
||
iters = len(loader_for_count)
|
||
total_optimizer_steps = (iters // args.accumulation_steps) * args.epochs
|
||
scheduler = CosineAnnealingLR(optimizer, T_max=total_optimizer_steps, eta_min=args.learning_rate / 10)
|
||
|
||
# ========== 6. 从ckp恢复状态 ==========
|
||
start_epoch, start_step = 0, 0
|
||
if ckp_data:
|
||
model.load_state_dict(ckp_data['model'])
|
||
optimizer.load_state_dict(ckp_data['optimizer'])
|
||
scheduler.load_state_dict(ckp_data['scheduler'])
|
||
start_epoch = ckp_data['epoch']
|
||
start_step = ckp_data.get('step', 0)
|
||
|
||
# ========== 7. DDP包模型 ==========
|
||
if dist.is_initialized():
|
||
model._ddp_params_and_buffers_to_ignore = {"freqs_cos", "freqs_sin"}
|
||
model = DistributedDataParallel(model, device_ids=[local_rank])
|
||
|
||
# ========== 8. 开始训练 ==========
|
||
for epoch in range(start_epoch, args.epochs):
|
||
train_sampler and train_sampler.set_epoch(epoch)
|
||
if epoch == start_epoch and start_step > 0: # 第一个epoch且存在检查点
|
||
batch_sampler = SkipBatchSampler(train_sampler or range(len(train_ds)), args.batch_size, start_step + 1)
|
||
loader = DataLoader(train_ds, batch_sampler=batch_sampler, num_workers=args.num_workers, pin_memory=True)
|
||
Logger(f'Epoch [{epoch + 1}/{args.epochs}]: 跳过前{start_step}个step,从step {start_step + 1}开始')
|
||
spo_train_epoch(epoch, loader, len(loader) + start_step + 1, ref_model, reward_model, reward_tokenizer, value_tracker, start_step, wandb)
|
||
else: # 默认从头开始
|
||
loader = DataLoader(train_ds, batch_size=args.batch_size, pin_memory=True,
|
||
drop_last=False, shuffle=(train_sampler is None),
|
||
num_workers=args.num_workers, sampler=train_sampler)
|
||
spo_train_epoch(epoch, loader, len(loader), ref_model, reward_model, reward_tokenizer, value_tracker, 0, wandb)
|
||
|
||
# ========== 9. 清理分布进程 ==========
|
||
if dist.is_initialized(): dist.destroy_process_group() |