mirror of
https://github.com/jingyaogong/minimind.git
synced 2026-01-13 19:57:20 +08:00
374 lines
18 KiB
Python
374 lines
18 KiB
Python
import os
|
||
import sys
|
||
|
||
__package__ = "trainer"
|
||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
||
|
||
import argparse
|
||
import re
|
||
import torch
|
||
import torch.distributed as dist
|
||
import torch.nn.functional as F
|
||
from torch import optim, nn
|
||
from torch.nn.parallel import DistributedDataParallel
|
||
from torch.utils.data import DataLoader, DistributedSampler
|
||
from transformers import AutoTokenizer, AutoModel
|
||
from model.model_minimind import MiniMindConfig, MiniMindForCausalLM
|
||
from dataset.lm_dataset import RLAIFDataset
|
||
from torch.nn.utils import clip_grad_norm_
|
||
from torch.optim.lr_scheduler import CosineAnnealingLR
|
||
|
||
|
||
def Logger(content):
|
||
if not ddp or dist.get_rank() == 0:
|
||
print(content)
|
||
|
||
|
||
def calculate_rewards(prompts, responses, reward_model, reward_tokenizer):
|
||
"""整合所有奖励函数计算总奖励"""
|
||
|
||
def reasoning_model_reward(rewards):
|
||
# 1. 格式奖励(仅针对训练推理模型时使用)
|
||
pattern = r"^<think>\n.*?\n</think>\n<answer>\n.*?\n</answer>$"
|
||
pattern2 = r"^<think>\n.*?\n</think>\n\n<answer>\n.*?\n</answer>$"
|
||
|
||
matches_pattern = [re.match(pattern, response, re.S) for response in responses]
|
||
matches_pattern2 = [re.match(pattern2, response, re.S) for response in responses]
|
||
|
||
format_rewards = []
|
||
for match_pattern, match_pattern2 in zip(matches_pattern, matches_pattern2):
|
||
if match_pattern:
|
||
format_rewards.append(0.5)
|
||
elif match_pattern2:
|
||
format_rewards.append(0.5)
|
||
else:
|
||
format_rewards.append(0.0)
|
||
rewards += torch.tensor(format_rewards, device=args.device)
|
||
|
||
# 2. 标记奖励(防止严格奖励稀疏,仅针对训练推理模型时使用)
|
||
def mark_num(text):
|
||
reward = 0
|
||
if text.count("<think>") == 1:
|
||
reward += 0.25
|
||
if text.count("</think>") == 1:
|
||
reward += 0.25
|
||
if text.count("<answer>") == 1:
|
||
reward += 0.25
|
||
if text.count("</answer>") == 1:
|
||
reward += 0.25
|
||
return reward
|
||
|
||
mark_rewards = [mark_num(response) for response in responses]
|
||
rewards += torch.tensor(mark_rewards, device=args.device)
|
||
return rewards
|
||
|
||
rewards = torch.zeros(len(responses), device=args.device)
|
||
|
||
# 格式奖励
|
||
if args.reasoning == 1:
|
||
rewards = reasoning_model_reward(rewards) # 训练推理模型时使用
|
||
|
||
# 使用reward model计算整个response的奖励
|
||
with torch.no_grad():
|
||
reward_model_scores = []
|
||
for prompt, response in zip(prompts, responses):
|
||
pattern = r"<\|im_start\|>(system|user|assistant)\s+(.*?)<\|im_end\|>"
|
||
matches = re.findall(pattern, prompt, re.DOTALL)
|
||
messages = [{"role": role, "content": content.strip()} for role, content in matches]
|
||
|
||
tmp_chat = messages + [{"role": "assistant", "content": response}]
|
||
score = reward_model.get_score(reward_tokenizer, tmp_chat)
|
||
|
||
scale = 3.0
|
||
score = max(min(score, scale), -scale)
|
||
|
||
# 当args.reasoning=1时,额外计算<answer>内容的奖励
|
||
if args.reasoning == 1:
|
||
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
|
||
if answer_match:
|
||
answer_content = answer_match.group(1).strip()
|
||
# 对answer内容单独计算reward
|
||
tmp_chat = messages + [{"role": "assistant", "content": answer_content}]
|
||
answer_score = reward_model.get_score(reward_tokenizer, tmp_chat)
|
||
answer_score = max(min(answer_score, scale), -scale)
|
||
|
||
score = score * 0.4 + answer_score * 0.6
|
||
reward_model_scores.append(score)
|
||
|
||
reward_model_scores = torch.tensor(reward_model_scores, device=args.device)
|
||
rewards += reward_model_scores
|
||
|
||
return rewards
|
||
|
||
|
||
def ppo_train_epoch(epoch: int, wandb_run, old_actor_model, ref_model, actor_scheduler, critic_scheduler):
|
||
actor_model.train()
|
||
critic_model.train()
|
||
is_master = (not ddp) or dist.get_rank() == 0
|
||
|
||
for step, batch in enumerate(train_loader):
|
||
prompts = batch["prompt"] # list[str], length B
|
||
enc = tokenizer(prompts, return_tensors="pt", padding=True, truncation=True,
|
||
max_length=args.max_seq_len).to(args.device) # input_ids: [B, P], attention_mask: [B, P]
|
||
prompt_lengths = enc.attention_mask.sum(dim=1) # [B]
|
||
|
||
with torch.no_grad():
|
||
gen_out = actor_model.generate(
|
||
input_ids=enc.input_ids, attention_mask=enc.attention_mask,
|
||
max_new_tokens=args.max_gen_len, do_sample=True, temperature=0.8,
|
||
pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id) # [B, P+R]
|
||
|
||
responses_text = [tokenizer.decode(gen_out[i, prompt_lengths[i]:], skip_special_tokens=True) for i in range(len(prompts))]
|
||
rewards = calculate_rewards(prompts, responses_text, reward_model, reward_tokenizer) # [B]
|
||
|
||
full_mask = (gen_out != tokenizer.pad_token_id).long() # [B, P+R]
|
||
values_seq = critic_model(input_ids=gen_out, attention_mask=full_mask) # [B, P+R]
|
||
last_indices = full_mask.sum(dim=1) - 1 # [B]
|
||
values = values_seq[torch.arange(values_seq.size(0), device=values_seq.device), last_indices] # [B]
|
||
advantages = rewards - values.detach() # [B]
|
||
|
||
logits = actor_model(input_ids=gen_out, attention_mask=full_mask).logits # [B, P+R, V]
|
||
labels = gen_out[:, 1:].clone() # [B, P+R-1]
|
||
logp_tokens = F.log_softmax(logits[:, :-1], dim=-1).gather(2, labels.unsqueeze(-1)).squeeze(-1) # [B, P+R-1]
|
||
seq_len = gen_out.size(1) - 1
|
||
resp_mask = torch.arange(seq_len, device=gen_out.device).unsqueeze(0) >= prompt_lengths.unsqueeze(1)
|
||
final_mask = resp_mask & (~labels.eq(tokenizer.pad_token_id)) # [B, P+R-1]
|
||
actor_logp = (logp_tokens * final_mask).sum(dim=1) # [B]
|
||
|
||
with torch.no_grad():
|
||
old_logits = old_actor_model(input_ids=gen_out, attention_mask=full_mask).logits # [B, P+R, V]
|
||
old_logp_tokens = F.log_softmax(old_logits[:, :-1], dim=-1).gather(2, labels.unsqueeze(-1)).squeeze(-1) # [B, P+R-1]
|
||
old_logp = (old_logp_tokens * final_mask).sum(dim=1) # [B]
|
||
|
||
ref_logits = ref_model(input_ids=gen_out, attention_mask=full_mask).logits # [B, P+R, V]
|
||
ref_logp_tokens = F.log_softmax(ref_logits[:, :-1], dim=-1).gather(2, labels.unsqueeze(-1)).squeeze(-1) # [B, P+R-1]
|
||
ref_logp = (ref_logp_tokens * final_mask).sum(dim=1) # [B]
|
||
|
||
kl = (actor_logp - old_logp).mean() # scalar
|
||
kl_ref = (actor_logp - ref_logp).mean() # scalar
|
||
ratio = torch.exp(actor_logp - old_logp) # [B]
|
||
surr1 = ratio * advantages # [B]
|
||
surr2 = torch.clamp(ratio, 1.0 - args.clip_epsilon, 1.0 + args.clip_epsilon) * advantages # [B]
|
||
policy_loss = -torch.min(surr1, surr2).mean() # scalar
|
||
value_loss = F.mse_loss(values, rewards) # scalar
|
||
loss = policy_loss + args.vf_coef * value_loss + args.kl_coef * kl_ref # scalar
|
||
loss.backward()
|
||
|
||
if (step + 1) % args.accumulation_steps == 0:
|
||
clip_grad_norm_(actor_model.parameters(), args.grad_clip)
|
||
clip_grad_norm_(critic_model.parameters(), args.grad_clip)
|
||
actor_optimizer.step()
|
||
critic_optimizer.step()
|
||
actor_scheduler.step()
|
||
critic_scheduler.step()
|
||
actor_optimizer.zero_grad()
|
||
critic_optimizer.zero_grad()
|
||
|
||
if is_master:
|
||
response_ids = gen_out[:, enc.input_ids.shape[1]:]
|
||
is_eos = (response_ids == tokenizer.eos_token_id)
|
||
eos_indices = torch.argmax(is_eos.int(), dim=1)
|
||
has_eos = is_eos.any(dim=1)
|
||
lengths = torch.where(has_eos, eos_indices + 1, torch.tensor(response_ids.shape[1], device=is_eos.device))
|
||
avg_len = lengths.float().mean()
|
||
|
||
actor_loss_val = policy_loss.item()
|
||
critic_loss_val = value_loss.item()
|
||
reward_val = rewards.mean().item()
|
||
kl_val = kl.item()
|
||
kl_ref_val = kl_ref.item()
|
||
avg_len_val = avg_len.item()
|
||
actor_lr = actor_optimizer.param_groups[0]['lr']
|
||
critic_lr = critic_optimizer.param_groups[0]['lr']
|
||
|
||
if wandb_run is not None:
|
||
wandb_run.log({
|
||
"actor_loss": actor_loss_val,
|
||
"critic_loss": critic_loss_val,
|
||
"reward": reward_val,
|
||
"kl": kl_val,
|
||
"kl_ref": kl_ref_val,
|
||
"avg_response_len": avg_len_val,
|
||
"actor_lr": actor_lr,
|
||
})
|
||
|
||
Logger(f"Epoch: {epoch}, Step: {step + 1}/{len(train_loader)}, "
|
||
f"Actor Loss: {actor_loss_val:.4f}, Critic Loss: {critic_loss_val:.4f}, "
|
||
f"Reward: {reward_val:.4f}, KL: {kl_val:.4f}, KL_ref: {kl_ref_val:.4f}, "
|
||
f"Avg Response Len: {avg_len_val:.2f}, Actor LR: {actor_lr:.2e}, Critic LR: {critic_lr:.2e}")
|
||
|
||
if (step + 1) % args.update_old_actor_freq == 0:
|
||
state_dict = actor_model.module.state_dict() if isinstance(actor_model, torch.nn.parallel.DistributedDataParallel) else actor_model.state_dict()
|
||
old_actor_model.load_state_dict({k: v.detach().cpu() for k, v in state_dict.items()})
|
||
old_actor_model.to(args.device)
|
||
|
||
if ((step + 1) % args.save_interval == 0 or step == iter_per_epoch - 1) and (not ddp or dist.get_rank() == 0):
|
||
actor_model.eval()
|
||
moe_path = '_moe' if lm_config.use_moe else ''
|
||
ckp = f'{args.save_dir}/ppo_actor_{lm_config.hidden_size}{moe_path}.pth'
|
||
|
||
if isinstance(actor_model, torch.nn.parallel.DistributedDataParallel):
|
||
state_dict = actor_model.module.state_dict()
|
||
else:
|
||
state_dict = actor_model.state_dict()
|
||
|
||
state_dict = {k: v.half() for k, v in state_dict.items()} # 半精度保存
|
||
torch.save(state_dict, ckp)
|
||
actor_model.train()
|
||
|
||
|
||
# 自定义的Critic模型,继承自MiniMindLM
|
||
class CriticModel(MiniMindForCausalLM):
|
||
def __init__(self, params):
|
||
super().__init__(params)
|
||
# 替换lm_head为输出单一价值的线性层
|
||
self.value_head = nn.Linear(params.hidden_size, 1)
|
||
|
||
def forward(self, input_ids=None, attention_mask=None, **kwargs):
|
||
# 使用基础模型获取隐藏状态
|
||
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
|
||
# self.model 返回的是一个元组,第一个元素是 last_hidden_state
|
||
hidden_states = self.model.norm(outputs[0])
|
||
# 使用value_head获取价值估计
|
||
values = self.value_head(hidden_states).squeeze(-1)
|
||
return values
|
||
|
||
|
||
def init_model(lm_config):
|
||
tokenizer = AutoTokenizer.from_pretrained('../model/', padding_side='left')
|
||
if tokenizer.pad_token is None:
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
|
||
moe_path = '_moe' if lm_config.use_moe else ''
|
||
ckp = f'{args.save_dir}/{"reason" if args.reasoning == 1 else "full_sft"}_{lm_config.hidden_size}{moe_path}.pth'
|
||
state_dict = torch.load(ckp, map_location=args.device)
|
||
|
||
actor_model = MiniMindForCausalLM(lm_config)
|
||
actor_model.load_state_dict(state_dict, strict=False)
|
||
actor_model = actor_model.to(args.device)
|
||
|
||
old_actor_model = MiniMindForCausalLM(lm_config)
|
||
old_actor_model.load_state_dict(state_dict, strict=False)
|
||
old_actor_model = old_actor_model.eval().requires_grad_(False).to(args.device)
|
||
|
||
ref_model = MiniMindForCausalLM(lm_config)
|
||
ref_model.load_state_dict(state_dict, strict=False)
|
||
ref_model = ref_model.eval().requires_grad_(False).to(args.device)
|
||
|
||
critic_model = CriticModel(lm_config)
|
||
critic_model.load_state_dict(state_dict, strict=False)
|
||
critic_model = critic_model.to(args.device)
|
||
|
||
reward_name = "../../internlm2-1_8b-reward"
|
||
reward_model = AutoModel.from_pretrained(
|
||
reward_name, device_map="cuda", torch_dtype=torch.float32, trust_remote_code=True
|
||
).to(args.device).eval().requires_grad_(False)
|
||
reward_tokenizer = AutoTokenizer.from_pretrained(reward_name, trust_remote_code=True)
|
||
|
||
Logger(f'Actor模型总参数量:{sum(p.numel() for p in actor_model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
|
||
Logger(f'Critic模型总参数量:{sum(p.numel() for p in critic_model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
|
||
|
||
return actor_model, old_actor_model, ref_model, critic_model, reward_model, tokenizer, reward_tokenizer
|
||
|
||
|
||
def init_distributed_mode():
|
||
if not ddp: return
|
||
global ddp_local_rank, DEVICE
|
||
dist.init_process_group(backend="nccl")
|
||
ddp_local_rank = int(os.environ["LOCAL_RANK"])
|
||
DEVICE = f"cuda:{ddp_local_rank}"
|
||
torch.cuda.set_device(DEVICE)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--out_dir", type=str, default="../out")
|
||
parser.add_argument("--epochs", type=int, default=1)
|
||
parser.add_argument("--batch_size", type=int, default=2)
|
||
parser.add_argument("--learning_rate", type=float, default=8e-8)
|
||
parser.add_argument("--critic_learning_rate", type=float, default=8e-8)
|
||
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu")
|
||
parser.add_argument("--dtype", type=str, default="bfloat16")
|
||
parser.add_argument("--use_wandb", action="store_true")
|
||
parser.add_argument("--wandb_project", type=str, default="MiniMind-PPO")
|
||
parser.add_argument("--num_workers", type=int, default=1)
|
||
parser.add_argument("--ddp", action="store_true")
|
||
parser.add_argument("--accumulation_steps", type=int, default=1)
|
||
parser.add_argument("--grad_clip", type=float, default=1.0)
|
||
parser.add_argument("--log_interval", type=int, default=1)
|
||
parser.add_argument("--save_interval", type=int, default=10)
|
||
parser.add_argument('--hidden_size', default=512, type=int)
|
||
parser.add_argument('--num_hidden_layers', default=8, type=int)
|
||
parser.add_argument('--use_moe', default=False, type=bool)
|
||
parser.add_argument('--max_seq_len', default=66, type=int)
|
||
parser.add_argument("--max_gen_len", type=int, default=1536)
|
||
parser.add_argument("--data_path", type=str, default="../dataset/rlaif-mini.jsonl")
|
||
parser.add_argument("--clip_epsilon", type=float, default=0.1)
|
||
parser.add_argument("--vf_coef", type=float, default=0.5)
|
||
parser.add_argument("--kl_coef", type=float, default=0.02, help="KL散度惩罚系数")
|
||
parser.add_argument("--reasoning", type=int, default=1, help='0:普通模型,1:推理模型')
|
||
parser.add_argument("--update_old_actor_freq", type=int, default=4, help="频率:每处理n个batch后更新old_actor_model")
|
||
args = parser.parse_args()
|
||
|
||
lm_config = MiniMindConfig(hidden_size=args.hidden_size, num_hidden_layers=args.num_hidden_layers,
|
||
use_moe=args.use_moe)
|
||
args.save_dir = os.path.join(args.out_dir)
|
||
os.makedirs(args.save_dir, exist_ok=True)
|
||
os.makedirs(args.out_dir, exist_ok=True)
|
||
|
||
ddp = int(os.environ.get("RANK", -1)) != -1
|
||
ddp_local_rank, DEVICE = 0, "cuda:0"
|
||
base_seed = 1337
|
||
torch.manual_seed(base_seed)
|
||
torch.cuda.manual_seed(base_seed)
|
||
|
||
if ddp:
|
||
init_distributed_mode()
|
||
args.device = torch.device(DEVICE)
|
||
rank = dist.get_rank()
|
||
torch.manual_seed(base_seed + rank)
|
||
# 同时设置 CUDA 的随机种子
|
||
torch.cuda.manual_seed(base_seed + rank)
|
||
|
||
if args.use_wandb and (not ddp or ddp_local_rank == 0):
|
||
import swanlab as wandb
|
||
|
||
wandb.init(project=args.wandb_project)
|
||
else:
|
||
wandb = None
|
||
|
||
# 初始化所有模型
|
||
actor_model, old_actor_model, ref_model, critic_model, reward_model, tokenizer, reward_tokenizer = init_model(lm_config=lm_config)
|
||
|
||
# 准备数据集和数据加载器
|
||
train_ds = RLAIFDataset(args.data_path, tokenizer, max_length=(args.max_seq_len + args.max_gen_len))
|
||
train_sampler = DistributedSampler(train_ds) if ddp else None
|
||
train_loader = DataLoader(train_ds, batch_size=args.batch_size, pin_memory=True,
|
||
drop_last=False, shuffle=False,
|
||
num_workers=args.num_workers, sampler=train_sampler)
|
||
|
||
# 初始化优化器
|
||
actor_optimizer = optim.AdamW(actor_model.parameters(), lr=args.learning_rate)
|
||
critic_optimizer = optim.AdamW(critic_model.parameters(), lr=args.critic_learning_rate)
|
||
|
||
iter_per_epoch = len(train_loader)
|
||
total_optimizer_steps = (iter_per_epoch // args.accumulation_steps) * args.epochs
|
||
actor_scheduler = CosineAnnealingLR(actor_optimizer, T_max=total_optimizer_steps, eta_min=args.learning_rate / 10)
|
||
critic_scheduler = CosineAnnealingLR(critic_optimizer, T_max=total_optimizer_steps,
|
||
eta_min=args.critic_learning_rate / 10)
|
||
|
||
# 如果使用分布式训练,包装模型
|
||
if ddp:
|
||
actor_model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
||
critic_model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
||
actor_model = DistributedDataParallel(actor_model, device_ids=[ddp_local_rank])
|
||
critic_model = DistributedDataParallel(critic_model, device_ids=[ddp_local_rank])
|
||
# old_actor_model 不需要DDP包装,因为它只在主进程上用于计算,并且不进行梯度更新
|
||
old_actor_model.to(args.device)
|
||
|
||
for epoch in range(args.epochs):
|
||
ppo_train_epoch(epoch, wandb, old_actor_model, ref_model, actor_scheduler, critic_scheduler)
|
||
|
||
if ddp:
|
||
dist.destroy_process_group()
|