minimind/trainer/train_lora.py
jingyaogong a62faf34bd 250426
2025-04-26 10:05:47 +08:00

203 lines
8.0 KiB
Python

import os
import sys
__package__ = "trainer"
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import argparse
import time
import math
import warnings
import torch.distributed as dist
from contextlib import nullcontext
from torch.utils.data import DataLoader, DistributedSampler
from transformers import AutoTokenizer, AutoModelForCausalLM
from model.model_minimind import MiniMindConfig, MiniMindForCausalLM
from dataset.lm_dataset import SFTDataset
from model.model_lora import *
warnings.filterwarnings('ignore')
# Logger function
def Logger(content):
if not ddp or dist.get_rank() == 0:
print(content)
def get_lr(current_step, total_steps, lr):
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
# 代码和full_sft「几乎」一致
def train_epoch(epoch, wandb):
loss_fct = nn.CrossEntropyLoss(reduction='none')
start_time = time.time()
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(args.device)
Y = Y.to(args.device)
loss_mask = loss_mask.to(args.device)
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
with ctx:
res = model(X)
loss = loss_fct(
res.logits.view(-1, res.logits.size(-1)),
Y.view(-1)
).view(Y.size())
loss = (loss * loss_mask).sum() / loss_mask.sum()
loss += res.aux_loss
loss = loss / args.accumulation_steps
scaler.scale(loss).backward()
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(lora_params, args.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
if step % args.log_interval == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format(
epoch + 1,
args.epochs,
step,
iter_per_epoch,
loss.item() * args.accumulation_steps,
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
wandb.log({"loss": loss * args.accumulation_steps,
"lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
# 【区别1】只保存lora权重即可
save_lora(model, f'{args.save_dir}/lora/{args.lora_name}_{lm_config.hidden_size}.pth')
model.train()
def init_model(lm_config):
tokenizer = AutoTokenizer.from_pretrained('../model/')
model = MiniMindForCausalLM(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{args.save_dir}/rlhf_{lm_config.hidden_size}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=args.device)
model.load_state_dict(state_dict, strict=False)
return model.to(args.device), tokenizer
def init_distributed_mode():
if not ddp: return
global ddp_local_rank, DEVICE
dist.init_process_group(backend="nccl")
ddp_rank = int(os.environ["RANK"])
ddp_local_rank = int(os.environ["LOCAL_RANK"])
ddp_world_size = int(os.environ["WORLD_SIZE"])
DEVICE = f"cuda:{ddp_local_rank}"
torch.cuda.set_device(DEVICE)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="MiniMind SFT with LoRA")
parser.add_argument("--out_dir", type=str, default="../out")
parser.add_argument("--epochs", type=int, default=50)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--learning_rate", type=float, default=5e-5)
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu")
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--use_wandb", action="store_true")
parser.add_argument("--wandb_project", type=str, default="MiniMind-LoRA-SFT")
parser.add_argument("--num_workers", type=int, default=1)
parser.add_argument("--ddp", action="store_true")
parser.add_argument("--accumulation_steps", type=int, default=1)
parser.add_argument("--grad_clip", type=float, default=1.0)
parser.add_argument("--warmup_iters", type=int, default=0)
parser.add_argument("--log_interval", type=int, default=100)
parser.add_argument("--save_interval", type=int, default=1)
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument('--hidden_size', default=512, type=int)
parser.add_argument('--num_hidden_layers', default=8, type=int)
parser.add_argument('--max_seq_len', default=512, type=int)
parser.add_argument('--use_moe', default=False, type=bool)
parser.add_argument("--data_path", type=str, default="../dataset/lora_identity.jsonl")
parser.add_argument("--lora_name", type=str, default="lora_identity", help="根据任务保存成lora_(英文/医学/心理...)")
args = parser.parse_args()
lm_config = MiniMindConfig(hidden_size=args.hidden_size, num_hidden_layers=args.num_hidden_layers, use_moe=args.use_moe)
args.save_dir = os.path.join(args.out_dir)
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.out_dir, exist_ok=True)
tokens_per_iter = args.batch_size * args.max_seq_len
device_type = "cuda" if "cuda" in args.device else "cpu"
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
base_seed = 1337
torch.manual_seed(base_seed)
torch.cuda.manual_seed(base_seed)
if ddp:
init_distributed_mode()
args.device = torch.device(DEVICE)
rank = dist.get_rank()
torch.manual_seed(base_seed + rank)
# 同时设置 CUDA 的随机种子
torch.cuda.manual_seed(base_seed + rank)
args.wandb_run_name = f"MiniMind-Lora-SFT-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
else:
wandb = None
model, tokenizer = init_model(lm_config)
apply_lora(model)
total_params = sum(p.numel() for p in model.parameters()) # 总参数数量
lora_params_count = sum(p.numel() for name, p in model.named_parameters() if 'lora' in name) # LoRA 参数数量
if not ddp or dist.get_rank() == 0:
print(f"LLM 总参数量: {total_params}")
print(f"LoRA 参数量: {lora_params_count}")
print(f"LoRA 参数占比: {lora_params_count / total_params * 100:.2f}%")
for name, param in model.named_parameters():
if 'lora' not in name:
param.requires_grad = False
lora_params = []
for name, param in model.named_parameters():
if 'lora' in name:
lora_params.append(param)
# 只对 LoRA 参数进行优化
optimizer = optim.AdamW(lora_params, lr=args.learning_rate)
train_ds = SFTDataset(args.data_path, tokenizer, max_length=args.max_seq_len)
train_sampler = DistributedSampler(train_ds) if ddp else None
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=args.num_workers,
sampler=train_sampler
)
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):
train_epoch(epoch, wandb)