minimind/model/model_minimind.py
2026-01-01 22:41:46 +08:00

459 lines
22 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
# MiniMind Config
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
from transformers import PretrainedConfig
class MiniMindConfig(PretrainedConfig):
model_type = "minimind"
def __init__(
self,
dropout: float = 0.0,
bos_token_id: int = 1,
eos_token_id: int = 2,
hidden_act: str = 'silu',
hidden_size: int = 512,
intermediate_size: int = None,
max_position_embeddings: int = 32768,
num_attention_heads: int = 8,
num_hidden_layers: int = 8,
num_key_value_heads: int = 2,
vocab_size: int = 6400,
rms_norm_eps: float = 1e-05,
rope_theta: int = 1000000.0,
inference_rope_scaling: bool = False,
flash_attn: bool = True,
####################################################
# Here are the specific configurations of MOE
# When use_moe is false, the following is invalid
####################################################
use_moe: bool = False,
num_experts_per_tok: int = 2,
n_routed_experts: int = 4,
n_shared_experts: int = 1,
scoring_func: str = 'softmax',
aux_loss_alpha: float = 0.01,
seq_aux: bool = True,
norm_topk_prob: bool = True,
**kwargs
):
super().__init__(**kwargs)
self.dropout = dropout
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_key_value_heads = num_key_value_heads
self.vocab_size = vocab_size
self.rms_norm_eps = rms_norm_eps
self.rope_theta = rope_theta
self.inference_rope_scaling = inference_rope_scaling
# 外推长度 = factor * original_max_position_embeddings = 32768
self.rope_scaling = {
"beta_fast": 32,
"beta_slow": 1,
"factor": 16,
"original_max_position_embeddings": 2048,
"attention_factor": 1.0,
"type": "yarn"
} if self.inference_rope_scaling else None
self.flash_attn = flash_attn
####################################################
# Here are the specific configurations of MOE
# When use_moe is false, the following is invalid
####################################################
self.use_moe = use_moe
self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
self.n_routed_experts = n_routed_experts # 总的专家数量
self.n_shared_experts = n_shared_experts # 共享专家
self.scoring_func = scoring_func # 评分函数,默认为'softmax'
self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
# MiniMind Model
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
import math
import torch
import torch.nn.init as init
import torch.nn.functional as F
from torch import nn
from transformers.activations import ACT2FN
from typing import Optional, Tuple, List, Union
from transformers import PreTrainedModel, GenerationMixin, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x)
def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), rope_base: float = 1e6,
rope_scaling: Optional[dict] = None):
freqs, attn_factor = 1.0 / (rope_base ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)), 1.0
if rope_scaling is not None:
orig_max, factor, beta_fast, beta_slow, attn_factor = (
rope_scaling.get("original_max_position_embeddings", 2048), rope_scaling.get("factor", 16),
rope_scaling.get("beta_fast", 32.0), rope_scaling.get("beta_slow", 1.0), rope_scaling.get("attention_factor", 1.0)
)
if end / orig_max > 1.0:
# YaRN: f'(i) = f(i)((1-γ) + γ/s), where γ∈[0,1] is linear ramp
inv_dim = lambda b: (dim * math.log(orig_max / (b * 2 * math.pi))) / (2 * math.log(rope_base))
low, high = max(math.floor(inv_dim(beta_fast)), 0), min(math.ceil(inv_dim(beta_slow)), dim // 2 - 1)
ramp = torch.clamp((torch.arange(dim // 2, device=freqs.device).float() - low) / max(high - low, 0.001), 0, 1)
freqs = freqs * (1 - ramp + ramp / factor)
t = torch.arange(end, device=freqs.device)
freqs = torch.outer(t, freqs).float()
freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1) * attn_factor
freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1) * attn_factor
return freqs_cos, freqs_sin
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
def rotate_half(x):
return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1)
q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim))
k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim))
return q_embed, k_embed
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, num_key_value_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :].expand(bs, slen, num_key_value_heads, n_rep, head_dim).reshape(bs, slen, num_key_value_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: MiniMindConfig):
super().__init__()
self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads
assert args.num_attention_heads % self.num_key_value_heads == 0
self.n_local_heads = args.num_attention_heads
self.n_local_kv_heads = self.num_key_value_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.hidden_size // args.num_attention_heads
self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
def forward(self,
x: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor], # 修改为接收cos和sin
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache=False,
attention_mask: Optional[torch.Tensor] = None):
bsz, seq_len, _ = x.shape
xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x)
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
cos, sin = position_embeddings
xq, xk = apply_rotary_pos_emb(xq, xk, cos[:seq_len], sin[:seq_len])
# kv_cache实现
if past_key_value is not None:
xk = torch.cat([past_key_value[0], xk], dim=1)
xv = torch.cat([past_key_value[1], xv], dim=1)
past_kv = (xk, xv) if use_cache else None
xq, xk, xv = (
xq.transpose(1, 2),
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
)
if self.flash and seq_len > 1 and (attention_mask is None or torch.all(attention_mask == 1)):
output = F.scaled_dot_product_attention(xq, xk, xv, dropout_p=self.dropout if self.training else 0.0, is_causal=True)
else:
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores = scores + torch.triu(
torch.full((seq_len, seq_len), float("-inf"), device=scores.device),
diagonal=1
).unsqueeze(0).unsqueeze(0) # scores+mask
if attention_mask is not None:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = (1.0 - extended_attention_mask) * -1e9
scores = scores + extended_attention_mask
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = scores @ xv
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
output = self.resid_dropout(self.o_proj(output))
return output, past_kv
class FeedForward(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
if config.intermediate_size is None:
intermediate_size = int(config.hidden_size * 8 / 3)
config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64)
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.dropout = nn.Dropout(config.dropout)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)))
class MoEGate(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.n_routed_experts = config.n_routed_experts
self.scoring_func = config.scoring_func
self.alpha = config.aux_loss_alpha
self.seq_aux = config.seq_aux
self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.hidden_size
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
self.reset_parameters()
def reset_parameters(self) -> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, self.weight, None)
if self.scoring_func == 'softmax':
scores = logits.softmax(dim=-1)
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
if self.training and self.alpha > 0.0:
scores_for_aux = scores
aux_topk = self.top_k
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
if self.seq_aux:
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
ce.scatter_add_(1, topk_idx_for_aux_loss,
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
seq_len * aux_topk / self.n_routed_experts)
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
else:
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
ce = mask_ce.float().mean(0)
Pi = scores_for_aux.mean(0)
fi = ce * self.n_routed_experts
aux_loss = (Pi * fi).sum() * self.alpha
else:
aux_loss = scores.new_zeros(1).squeeze()
return topk_idx, topk_weight, aux_loss
class MOEFeedForward(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
self.config = config
self.experts = nn.ModuleList([
FeedForward(config)
for _ in range(config.n_routed_experts)
])
self.gate = MoEGate(config)
if config.n_shared_experts > 0:
self.shared_experts = nn.ModuleList([
FeedForward(config)
for _ in range(config.n_shared_experts)
])
def forward(self, x):
identity = x
orig_shape = x.shape
bsz, seq_len, _ = x.shape
# 使用门控机制选择专家
topk_idx, topk_weight, aux_loss = self.gate(x)
x = x.view(-1, x.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
y = torch.empty_like(x, dtype=x.dtype)
for i, expert in enumerate(self.experts):
expert_out = expert(x[flat_topk_idx == i])
if expert_out.shape[0] > 0: y[flat_topk_idx == i] = expert_out.to(y.dtype)
else: y[flat_topk_idx == i] = expert_out.to(y.dtype) + 0 * sum(p.sum() for p in expert.parameters())
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
y = y.view(*orig_shape)
else:
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
if self.config.n_shared_experts > 0:
for expert in self.shared_experts:
y = y + expert(identity)
self.aux_loss = aux_loss
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
token_idxs = idxs // self.config.num_experts_per_tok
# 当tokens_per_expert = [6, 15, 20, 26]tokens_per_expert.shape[0]即为专家数量此时为4
# 且token_idxs = [3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...] 时
# 意味token_idxs[:6] -> [3, 7, 19, 21, 24, 25]这6个位置属于专家0处理的token每个token有可能被多个专家处理这取决于num_experts_per_tok
# 接下来9个位置token_idxs[6:15] -> [4, 5, 6, 10, 11, 12...]属于专家1处理的token...依此类推
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens).to(expert_cache.dtype)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
return expert_cache
class MiniMindBlock(nn.Module):
def __init__(self, layer_id: int, config: MiniMindConfig):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_dim = config.hidden_size // config.num_attention_heads
self.self_attn = Attention(config)
self.layer_id = layer_id
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None):
residual = hidden_states
hidden_states, present_key_value = self.self_attn(
self.input_layernorm(hidden_states), position_embeddings,
past_key_value, use_cache, attention_mask
)
hidden_states += residual
hidden_states = hidden_states + self.mlp(self.post_attention_layernorm(hidden_states))
return hidden_states, present_key_value
class MiniMindModel(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
self.config = config
self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.dropout = nn.Dropout(config.dropout)
self.layers = nn.ModuleList([MiniMindBlock(l, config) for l in range(self.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads,
end=config.max_position_embeddings, rope_base=config.rope_theta,
rope_scaling=config.rope_scaling)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
def forward(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
**kwargs):
batch_size, seq_length = input_ids.shape
if hasattr(past_key_values, 'layers'): past_key_values = None
past_key_values = past_key_values or [None] * len(self.layers)
start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0
hidden_states = self.dropout(self.embed_tokens(input_ids))
position_embeddings = (
self.freqs_cos[start_pos:start_pos + seq_length],
self.freqs_sin[start_pos:start_pos + seq_length]
)
presents = []
for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)):
hidden_states, present = layer(
hidden_states,
position_embeddings,
past_key_value=past_key_value,
use_cache=use_cache,
attention_mask=attention_mask
)
presents.append(present)
hidden_states = self.norm(hidden_states)
aux_loss = sum([l.mlp.aux_loss for l in self.layers if isinstance(l.mlp, MOEFeedForward)], hidden_states.new_zeros(1).squeeze())
return hidden_states, presents, aux_loss
class MiniMindForCausalLM(PreTrainedModel, GenerationMixin):
config_class = MiniMindConfig
def __init__(self, config: MiniMindConfig = None):
self.config = config or MiniMindConfig()
super().__init__(self.config)
self.model = MiniMindModel(self.config)
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.model.embed_tokens.weight = self.lm_head.weight
def forward(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
logits_to_keep: Union[int, torch.Tensor] = 0,
**args):
hidden_states, past_key_values, aux_loss = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
**args
)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
output = CausalLMOutputWithPast(logits=logits, past_key_values=past_key_values, hidden_states=hidden_states)
output.aux_loss = aux_loss
return output