docs(readme): add Cloud Models usage for Python and Cloud API example\n\n- Add local offload flow (signin, pull, run)\n- Add direct cloud API usage with auth\n- List supported cloud model IDs\n- Keep examples minimal; match existing style

This commit is contained in:
Eden Chan 2025-10-15 16:51:02 -07:00
parent 9ddd5f0182
commit 9fcc244512

View File

@ -50,6 +50,82 @@ for chunk in stream:
print(chunk['message']['content'], end='', flush=True)
```
## Cloud Models
Run larger models by offloading to Ollamas cloud while keeping your local workflow.
- Supported models: `deepseek-v3.1:671b-cloud`, `gpt-oss:20b-cloud`, `gpt-oss:120b-cloud`, `kimi-k2:1t-cloud`, `qwen3-coder:480b-cloud`
### Run via local Ollama
1) Sign in (one-time):
```
ollama signin
```
2) Pull a cloud model:
```
ollama pull gpt-oss:120b-cloud
```
3) Use as usual (offloads automatically):
```python
from ollama import Client
client = Client()
messages = [
{
'role': 'user',
'content': 'Why is the sky blue?',
},
]
for part in client.chat('gpt-oss:120b-cloud', messages=messages, stream=True):
print(part['message']['content'], end='', flush=True)
```
### Cloud API (ollama.com)
Access cloud models directly by pointing the client at `https://ollama.com`.
1) Create an API key, then set:
```
export OLLAMA_API_KEY=your_api_key
```
2) (Optional) List models available via the API:
```
curl https://ollama.com/api/tags
```
3) Generate a response via the cloud API:
```python
import os
from ollama import Client
client = Client(
host='https://ollama.com',
headers={'Authorization': 'Bearer ' + os.environ.get('OLLAMA_API_KEY')}
)
messages = [
{
'role': 'user',
'content': 'Why is the sky blue?',
},
]
for part in client.chat('gpt-oss:120b', messages=messages, stream=True):
print(part['message']['content'], end='', flush=True)
```
## Custom client
A custom client can be created by instantiating `Client` or `AsyncClient` from `ollama`.