# Ollama Python Library The Ollama Python library provides the easiest way to integrate Python 3.8+ projects with [Ollama](https://github.com/ollama/ollama). ## Prerequisites - [Ollama](https://ollama.com/download) should be installed and running - Pull a model to use with the library: `ollama pull ` e.g. `ollama pull gemma3` - See [Ollama.com](https://ollama.com/search) for more information on the models available. ## Install ```sh pip install ollama ``` ## Usage ```python from ollama import chat from ollama import ChatResponse response: ChatResponse = chat(model='gemma3', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', }, ]) print(response['message']['content']) # or access fields directly from the response object print(response.message.content) ``` See [_types.py](ollama/_types.py) for more information on the response types. ## Streaming responses Response streaming can be enabled by setting `stream=True`. ```python from ollama import chat stream = chat( model='gemma3', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}], stream=True, ) for chunk in stream: print(chunk['message']['content'], end='', flush=True) ``` ## Cloud Models Run larger models by offloading to Ollama’s cloud while keeping your local workflow. - Supported models: `deepseek-v3.1:671b-cloud`, `gpt-oss:20b-cloud`, `gpt-oss:120b-cloud`, `kimi-k2:1t-cloud`, `qwen3-coder:480b-cloud`, `kimi-k2-thinking` See [Ollama Models - Cloud](https://ollama.com/search?c=cloud) for more information ### Run via local Ollama 1) Sign in (one-time): ``` ollama signin ``` 2) Pull a cloud model: ``` ollama pull gpt-oss:120b-cloud ``` 3) Make a request: ```python from ollama import Client client = Client() messages = [ { 'role': 'user', 'content': 'Why is the sky blue?', }, ] for part in client.chat('gpt-oss:120b-cloud', messages=messages, stream=True): print(part.message.content, end='', flush=True) ``` ### Cloud API (ollama.com) Access cloud models directly by pointing the client at `https://ollama.com`. 1) Create an API key from [ollama.com](https://ollama.com/settings/keys) , then set: ``` export OLLAMA_API_KEY=your_api_key ``` 2) (Optional) List models available via the API: ``` curl https://ollama.com/api/tags ``` 3) Generate a response via the cloud API: ```python import os from ollama import Client client = Client( host='https://ollama.com', headers={'Authorization': 'Bearer ' + os.environ.get('OLLAMA_API_KEY')} ) messages = [ { 'role': 'user', 'content': 'Why is the sky blue?', }, ] for part in client.chat('gpt-oss:120b', messages=messages, stream=True): print(part.message.content, end='', flush=True) ``` ## Custom client A custom client can be created by instantiating `Client` or `AsyncClient` from `ollama`. All extra keyword arguments are passed into the [`httpx.Client`](https://www.python-httpx.org/api/#client). ```python from ollama import Client client = Client( host='http://localhost:11434', headers={'x-some-header': 'some-value'} ) response = client.chat(model='gemma3', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', }, ]) ``` ## Async client The `AsyncClient` class is used to make asynchronous requests. It can be configured with the same fields as the `Client` class. ```python import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} response = await AsyncClient().chat(model='gemma3', messages=[message]) asyncio.run(chat()) ``` Setting `stream=True` modifies functions to return a Python asynchronous generator: ```python import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} async for part in await AsyncClient().chat(model='gemma3', messages=[message], stream=True): print(part['message']['content'], end='', flush=True) asyncio.run(chat()) ``` ## API The Ollama Python library's API is designed around the [Ollama REST API](https://github.com/ollama/ollama/blob/main/docs/api.md) ### Chat ```python ollama.chat(model='gemma3', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}]) ``` ### Generate ```python ollama.generate(model='gemma3', prompt='Why is the sky blue?') ``` ### List ```python ollama.list() ``` ### Show ```python ollama.show('gemma3') ``` ### Create ```python ollama.create(model='example', from_='gemma3', system="You are Mario from Super Mario Bros.") ``` ### Copy ```python ollama.copy('gemma3', 'user/gemma3') ``` ### Delete ```python ollama.delete('gemma3') ``` ### Pull ```python ollama.pull('gemma3') ``` ### Push ```python ollama.push('user/gemma3') ``` ### Embed ```python ollama.embed(model='gemma3', input='The sky is blue because of rayleigh scattering') ``` ### Embed (batch) ```python ollama.embed(model='gemma3', input=['The sky is blue because of rayleigh scattering', 'Grass is green because of chlorophyll']) ``` ### Ps ```python ollama.ps() ``` ## Errors Errors are raised if requests return an error status or if an error is detected while streaming. ```python model = 'does-not-yet-exist' try: ollama.chat(model) except ollama.ResponseError as e: print('Error:', e.error) if e.status_code == 404: ollama.pull(model) ```