ollama-python/ollama/_types.py
Patrick Devine 2434443b88 whackamole
2025-01-13 16:57:17 -08:00

539 lines
13 KiB
Python

import json
from base64 import b64decode, b64encode
from pathlib import Path
from datetime import datetime
from typing import Any, Mapping, Optional, Union, Sequence, Dict, List
from pydantic.json_schema import JsonSchemaValue
from typing_extensions import Annotated, Literal
from pydantic import (
BaseModel,
ByteSize,
ConfigDict,
Field,
model_serializer,
)
class SubscriptableBaseModel(BaseModel):
def __getitem__(self, key: str) -> Any:
"""
>>> msg = Message(role='user')
>>> msg['role']
'user'
>>> msg = Message(role='user')
>>> msg['nonexistent']
Traceback (most recent call last):
KeyError: 'nonexistent'
"""
if key in self:
return getattr(self, key)
raise KeyError(key)
def __setitem__(self, key: str, value: Any) -> None:
"""
>>> msg = Message(role='user')
>>> msg['role'] = 'assistant'
>>> msg['role']
'assistant'
>>> tool_call = Message.ToolCall(function=Message.ToolCall.Function(name='foo', arguments={}))
>>> msg = Message(role='user', content='hello')
>>> msg['tool_calls'] = [tool_call]
>>> msg['tool_calls'][0]['function']['name']
'foo'
"""
setattr(self, key, value)
def __contains__(self, key: str) -> bool:
"""
>>> msg = Message(role='user')
>>> 'nonexistent' in msg
False
>>> 'role' in msg
True
>>> 'content' in msg
False
>>> msg.content = 'hello!'
>>> 'content' in msg
True
>>> msg = Message(role='user', content='hello!')
>>> 'content' in msg
True
>>> 'tool_calls' in msg
False
>>> msg['tool_calls'] = []
>>> 'tool_calls' in msg
True
>>> msg['tool_calls'] = [Message.ToolCall(function=Message.ToolCall.Function(name='foo', arguments={}))]
>>> 'tool_calls' in msg
True
>>> msg['tool_calls'] = None
>>> 'tool_calls' in msg
True
>>> tool = Tool()
>>> 'type' in tool
True
"""
if key in self.model_fields_set:
return True
if key in self.model_fields:
return self.model_fields[key].default is not None
return False
def get(self, key: str, default: Any = None) -> Any:
"""
>>> msg = Message(role='user')
>>> msg.get('role')
'user'
>>> msg = Message(role='user')
>>> msg.get('nonexistent')
>>> msg = Message(role='user')
>>> msg.get('nonexistent', 'default')
'default'
>>> msg = Message(role='user', tool_calls=[ Message.ToolCall(function=Message.ToolCall.Function(name='foo', arguments={}))])
>>> msg.get('tool_calls')[0]['function']['name']
'foo'
"""
return self[key] if key in self else default
class Options(SubscriptableBaseModel):
# load time options
numa: Optional[bool] = None
num_ctx: Optional[int] = None
num_batch: Optional[int] = None
num_gpu: Optional[int] = None
main_gpu: Optional[int] = None
low_vram: Optional[bool] = None
f16_kv: Optional[bool] = None
logits_all: Optional[bool] = None
vocab_only: Optional[bool] = None
use_mmap: Optional[bool] = None
use_mlock: Optional[bool] = None
embedding_only: Optional[bool] = None
num_thread: Optional[int] = None
# runtime options
num_keep: Optional[int] = None
seed: Optional[int] = None
num_predict: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
tfs_z: Optional[float] = None
typical_p: Optional[float] = None
repeat_last_n: Optional[int] = None
temperature: Optional[float] = None
repeat_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
mirostat: Optional[int] = None
mirostat_tau: Optional[float] = None
mirostat_eta: Optional[float] = None
penalize_newline: Optional[bool] = None
stop: Optional[Sequence[str]] = None
class BaseRequest(SubscriptableBaseModel):
model: Annotated[str, Field(min_length=1)]
'Model to use for the request.'
class BaseStreamableRequest(BaseRequest):
stream: Optional[bool] = None
'Stream response.'
class BaseGenerateRequest(BaseStreamableRequest):
options: Optional[Union[Mapping[str, Any], Options]] = None
'Options to use for the request.'
format: Optional[Union[Literal['', 'json'], JsonSchemaValue]] = None
'Format of the response.'
keep_alive: Optional[Union[float, str]] = None
'Keep model alive for the specified duration.'
class Image(BaseModel):
value: Union[str, bytes, Path]
@model_serializer
def serialize_model(self):
if isinstance(self.value, (Path, bytes)):
return b64encode(self.value.read_bytes() if isinstance(self.value, Path) else self.value).decode()
if isinstance(self.value, str):
try:
if Path(self.value).exists():
return b64encode(Path(self.value).read_bytes()).decode()
except Exception:
# Long base64 string can't be wrapped in Path, so try to treat as base64 string
pass
# String might be a file path, but might not exist
if self.value.split('.')[-1] in ('png', 'jpg', 'jpeg', 'webp'):
raise ValueError(f'File {self.value} does not exist')
try:
# Try to decode to check if it's already base64
b64decode(self.value)
return self.value
except Exception:
raise ValueError('Invalid image data, expected base64 string or path to image file') from Exception
class GenerateRequest(BaseGenerateRequest):
prompt: Optional[str] = None
'Prompt to generate response from.'
suffix: Optional[str] = None
'Suffix to append to the response.'
system: Optional[str] = None
'System prompt to prepend to the prompt.'
template: Optional[str] = None
'Template to use for the response.'
context: Optional[Sequence[int]] = None
'Tokenized history to use for the response.'
raw: Optional[bool] = None
images: Optional[Sequence[Image]] = None
'Image data for multimodal models.'
class BaseGenerateResponse(SubscriptableBaseModel):
model: Optional[str] = None
'Model used to generate response.'
created_at: Optional[str] = None
'Time when the request was created.'
done: Optional[bool] = None
'True if response is complete, otherwise False. Useful for streaming to detect the final response.'
done_reason: Optional[str] = None
'Reason for completion. Only present when done is True.'
total_duration: Optional[int] = None
'Total duration in nanoseconds.'
load_duration: Optional[int] = None
'Load duration in nanoseconds.'
prompt_eval_count: Optional[int] = None
'Number of tokens evaluated in the prompt.'
prompt_eval_duration: Optional[int] = None
'Duration of evaluating the prompt in nanoseconds.'
eval_count: Optional[int] = None
'Number of tokens evaluated in inference.'
eval_duration: Optional[int] = None
'Duration of evaluating inference in nanoseconds.'
class GenerateResponse(BaseGenerateResponse):
"""
Response returned by generate requests.
"""
response: str
'Response content. When streaming, this contains a fragment of the response.'
context: Optional[Sequence[int]] = None
'Tokenized history up to the point of the response.'
class Message(SubscriptableBaseModel):
"""
Chat message.
"""
role: Literal['user', 'assistant', 'system', 'tool']
"Assumed role of the message. Response messages has role 'assistant' or 'tool'."
content: Optional[str] = None
'Content of the message. Response messages contains message fragments when streaming.'
images: Optional[Sequence[Image]] = None
"""
Optional list of image data for multimodal models.
Valid input types are:
- `str` or path-like object: path to image file
- `bytes` or bytes-like object: raw image data
Valid image formats depend on the model. See the model card for more information.
"""
class ToolCall(SubscriptableBaseModel):
"""
Model tool calls.
"""
class Function(SubscriptableBaseModel):
"""
Tool call function.
"""
name: str
'Name of the function.'
arguments: Mapping[str, Any]
'Arguments of the function.'
function: Function
'Function to be called.'
tool_calls: Optional[Sequence[ToolCall]] = None
"""
Tools calls to be made by the model.
"""
class Tool(SubscriptableBaseModel):
type: Optional[Literal['function']] = 'function'
class Function(SubscriptableBaseModel):
name: Optional[str] = None
description: Optional[str] = None
class Parameters(SubscriptableBaseModel):
type: Optional[Literal['object']] = 'object'
required: Optional[Sequence[str]] = None
class Property(SubscriptableBaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
type: Optional[str] = None
description: Optional[str] = None
properties: Optional[Mapping[str, Property]] = None
parameters: Optional[Parameters] = None
function: Optional[Function] = None
class ChatRequest(BaseGenerateRequest):
messages: Optional[Sequence[Union[Mapping[str, Any], Message]]] = None
'Messages to chat with.'
tools: Optional[Sequence[Tool]] = None
'Tools to use for the chat.'
class ChatResponse(BaseGenerateResponse):
"""
Response returned by chat requests.
"""
message: Message
'Response message.'
class EmbedRequest(BaseRequest):
input: Union[str, Sequence[str]]
'Input text to embed.'
truncate: Optional[bool] = None
'Truncate the input to the maximum token length.'
options: Optional[Union[Mapping[str, Any], Options]] = None
'Options to use for the request.'
keep_alive: Optional[Union[float, str]] = None
class EmbedResponse(BaseGenerateResponse):
"""
Response returned by embed requests.
"""
embeddings: Sequence[Sequence[float]]
'Embeddings of the inputs.'
class EmbeddingsRequest(BaseRequest):
prompt: Optional[str] = None
'Prompt to generate embeddings from.'
options: Optional[Union[Mapping[str, Any], Options]] = None
'Options to use for the request.'
keep_alive: Optional[Union[float, str]] = None
class EmbeddingsResponse(SubscriptableBaseModel):
"""
Response returned by embeddings requests.
"""
embedding: Sequence[float]
'Embedding of the prompt.'
class PullRequest(BaseStreamableRequest):
"""
Request to pull the model.
"""
insecure: Optional[bool] = None
'Allow insecure (HTTP) connections.'
class PushRequest(BaseStreamableRequest):
"""
Request to pull the model.
"""
insecure: Optional[bool] = None
'Allow insecure (HTTP) connections.'
class CreateRequest(BaseStreamableRequest):
@model_serializer(mode='wrap')
def serialize_model(self, nxt):
output = nxt(self)
if 'from_' in output:
output['from'] = output.pop('from_')
return output
"""
Request to create a new model.
"""
quantize: Optional[str] = None
from_: Optional[str] = None
files: Optional[Dict[str, str]] = None
adapters: Optional[Dict[str, str]] = None
template: Optional[str] = None
license: Optional[Union[str, List[str]]] = None
system: Optional[str] = None
parameters: Optional[Union[Mapping[str, Any], Options]] = None
messages: Optional[Sequence[Union[Mapping[str, Any], Message]]] = None
class ModelDetails(SubscriptableBaseModel):
parent_model: Optional[str] = None
format: Optional[str] = None
family: Optional[str] = None
families: Optional[Sequence[str]] = None
parameter_size: Optional[str] = None
quantization_level: Optional[str] = None
class ListResponse(SubscriptableBaseModel):
class Model(SubscriptableBaseModel):
model: Optional[str] = None
modified_at: Optional[datetime] = None
digest: Optional[str] = None
size: Optional[ByteSize] = None
details: Optional[ModelDetails] = None
models: Sequence[Model]
'List of models.'
class DeleteRequest(BaseRequest):
"""
Request to delete a model.
"""
class CopyRequest(BaseModel):
"""
Request to copy a model.
"""
source: str
'Source model to copy.'
destination: str
'Destination model to copy to.'
class StatusResponse(SubscriptableBaseModel):
status: Optional[str] = None
class ProgressResponse(StatusResponse):
completed: Optional[int] = None
total: Optional[int] = None
digest: Optional[str] = None
class ShowRequest(BaseRequest):
"""
Request to show model information.
"""
class ShowResponse(SubscriptableBaseModel):
modified_at: Optional[datetime] = None
template: Optional[str] = None
modelfile: Optional[str] = None
license: Optional[str] = None
details: Optional[ModelDetails] = None
modelinfo: Optional[Mapping[str, Any]] = Field(alias='model_info')
parameters: Optional[str] = None
class ProcessResponse(SubscriptableBaseModel):
class Model(SubscriptableBaseModel):
model: Optional[str] = None
name: Optional[str] = None
digest: Optional[str] = None
expires_at: Optional[datetime] = None
size: Optional[ByteSize] = None
size_vram: Optional[ByteSize] = None
details: Optional[ModelDetails] = None
models: Sequence[Model]
class RequestError(Exception):
"""
Common class for request errors.
"""
def __init__(self, error: str):
super().__init__(error)
self.error = error
'Reason for the error.'
class ResponseError(Exception):
"""
Common class for response errors.
"""
def __init__(self, error: str, status_code: int = -1):
try:
# try to parse content as JSON and extract 'error'
# fallback to raw content if JSON parsing fails
error = json.loads(error).get('error', error)
except json.JSONDecodeError:
...
super().__init__(error)
self.error = error
'Reason for the error.'
self.status_code = status_code
'HTTP status code of the response.'