C++, Python and Python MoE layer all share the definition of ActivationType.
Currently this is done thru redefinition which is fragile and can break when adding new activation function types.
tensorrt_llm/_torch/utils.py
cpp/tensorrt_llm/kernels/cutlass_kernels/include/common.h
=>
tensorrt_llm/layers/moe.py
cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Co-authored-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>
Fix AutoTuner warmup request generating.
* The current warmup phase creates one request, which is insufficient for the warmup to cover the max_num_tokens. Revise the warmup phase to a batch of requests to cover the max_num_tokens to eliminate potential fallback cases.
Refactor AutoTuner API and reduce host overhead.
Refine (min, opt, max) values of optimization profile setup for get_valid_tactics to achieve the correct canImplement definition.
* Refine cache key assembly process to reduce host overhead and simplify API.
* Fix lru_cache usage to reduce host overhead.
* Move tuning config initialization as a one-time object in tunable runner to reduce host overhead.
Improve tuning config readability.
* Use dataclass to define tuning config.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
test: add test cases for 0.19 release (#3608)
* fix test name
* add quickstart test for nemotron-ultra
* add rcca multi-node test case for deepseek-v3
* add rcca info
---------
squash (#3642)
fix: nvbugs/5187237: fix deterministic mode crash (#3448)
* nvbugs/5187237 nvbugs/5112075: fix deterministic mode error
* remove waive
* Revert "remove waive"
This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac.
* revert ar fusion
---------
update fp8 doc (#3647)
tests: change qa perf test to trtllm-bench (#3619)
fix: FP8 quantized lm_head (NvBug 5214229) (#3567)
infra: Add PR approval protection for the release branch (#3634)
fix: nvbugs/5231298: pytorch allreduce issue (#3673)
Fix: nvbugs/5222698 variable not defined (#3630)
* Fix: nvbugs/5222698 variable not defined
* Tidy code
---------
test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685)
test:restore fp8 kv cache testing for L0 (#3671)
doc: Update DeepSeek perf docs (#3693)
* Update DeepSeek perf docs
* update
* Apply suggestions from code review
---------
tests: waive test_llm_multi_node (#3664)
fix: update test_user_buffers_mm_add_prologue atol (#3711)
Fix: cherry-pick hmac encryption from main branch (#3635)
* security fix cherry-pick changes from main
* fix hmac in remote mpi session (#3649)
---------
Un-waive DS-V3-Lite tests. (#3621)
fix: FP8 kv accuracy (#3675)
* fix FP8 kv accuracy
* update doc
---------
Fix script options for engines. (#3622)
unwaive multi-node test (#3721)
chore : Split more tests out of gpt tests (#3524) (#3674)
doc:add torch examples link into torch backend documentation (#3749)
test: Get Eagle tests working (#3593) (#3722)
Waive L0 test (#3756)
waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656)
Update ds v3 parameters in stress test. (#3676)
waive gemma on L20 (#3766)
https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758)
Include Qwen2VLDecoderLayer in the smooth_qwen2_model function.
fix: PP4 fixes and cleanup (#3688)
remove benchmark test list (#3643)
skip disagg deepseek test if sm!=90 (#3720)
test: skip failed cases on B200 (#3710)
* add skip condition to tests
* fix error
---------
test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718)
* skip_pre_ada for fp8 cases
* update
* update after rebase
---------
add know issue to deepseek doc. (#3800)
Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761)
Waive L0 tests (#3826)
fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793)
* Reduce memory usage in fused moe op associated with AutoTuning.
* Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens.
* Add free_memory logic of workspace in min_latency_mode fused moe path.
* Fix fused_moe fallback issue. (#3652)
min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression.
---------
[doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797)
Fix pre-commit
Fix again
Address some review comments for the MI
Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
* feat: Add NVFP4 UB pattern optimization pass in torch compile
* Add an additional flag for UB fp4 pattern to avoid inverse the scale
* Add NVFP4 related UB patterns
Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
* Update atol, some points fails for B200 umbriel.
Signed-off-by: liji-nv <59594262+liji-nv@users.noreply.github.com>
---------
Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
Signed-off-by: liji-nv <59594262+liji-nv@users.noreply.github.com>
* Several optimizations and fixings on the Autotuner.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Apply the new Python side Autotuner on current linear for nvFP4 data type.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Apply the new Python side Autotuner on MoE op
* Remove routers from cache key to improve inference perf
* Prevent unnecessary code profiling. Use do_preparation keyword to select which part should be executed during before evaluating any tactic.
* Remove try-catch inside moe profiling process.
* Move default tactic -1 to 0 transforms in cpp runner.
* Revise relavant tests.
* Predefined the bucketizing strategy for fused_moe
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Add specific_profile support for AutoTuner to bypass the standard cache search process for perf optimization
* Add specific_profile for moe
* Add specific profile for linear
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Fixing and revising according to reviewer's suggestions.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Use lru_cache for inference pref optimization.
* Revert gen_custom_cache_key feature
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Replace runner with runner id to achieve a serializable cache.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Code clean up and minor fixings.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Move all tunable runners and custom ops into torch_custom_ops.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Treat min_latency_mode as a independent dynamic tensor. Modify get_valid_tactics to suit for it.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
---------
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>