TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/decodingInput.h
Robin Kobus 37543a9ad7
[None][refactor] Simplify decoder state initialization for speculative decoding (#6869)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-08-22 18:44:17 +02:00

172 lines
7.0 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <optional>
#include <utility>
namespace tensorrt_llm::runtime
{
/// @brief Represents the inputs to the decoder.
/// @details This input type is assumed immutable. It represents whatever the decoder received initially, and can always
/// be referred to as such.
class DecodingInput
{
public:
using TensorConstPtr = ITensor::SharedConstPtr;
using TensorPtr = ITensor::SharedPtr;
DecodingInput() = default;
//! Mandatory parameters
//! The index of the decoding step we are on. Only used in Python runtime
SizeType32 step{};
//! The maximum number of tokens to decode
SizeType32 maxLength{};
//! The maximum length of the attention window to consider while decoding
SizeType32 maxAttentionWindow{};
//! The number of tokens to use as attention sinks, https://arxiv.org/html/2309.17453v3
SizeType32 sinkTokenLength{};
//! The number of samples in the batch
SizeType32 batchSize{};
//! The beam widths of each request, [batchSize]
std::vector<SizeType32> beamWidths;
//! The maximum value in the `stopWordsLens` tensor
SizeType32 maxStopWordsLen{};
//! The maximum value in the `badWordsLens` tensor
SizeType32 maxBadWordsLen{};
//! The output of the model forward computation, a probability distribution over the vocabulary
//! [batchSize][numGenTokens, beamWidth, vocabSizePadded] on gpu
std::vector<TensorConstPtr> logitsVec;
//! The end ids, [batchSize * beamWidth] on gpu
TensorConstPtr endIds;
//! Address map of the linear batch id to to the seq slots, [batchSize] on pinned, int32_t
TensorConstPtr batchSlots;
//! Optional parameters
//! Finished states at current iteration (skip decoding step of a request if true), [batchSize, beamWidth] on gpu
TensorConstPtr finishReasons;
//! The maximum sequence length for each sequence in the batch, [batchSize] on gpu
TensorConstPtr sequenceLimitLength;
TensorConstPtr embeddingBias; // [batchSize, vocabSizePadded] on gpu
TensorConstPtr lengths; // [batchSize, beamWidth] on gpu
std::vector<TensorPtr> badWordsLists; // [batchSize][2, badWordsLength] on gpu
TensorConstPtr badWordsPtrs; // [batchSize][2, badWordsLength] on pinned
TensorConstPtr badWordsLens; // [batchSize] on gpu
std::vector<TensorPtr> stopWordsLists; // [batchSize][2, stopWordsLength] on gpu
TensorConstPtr stopWordsPtrs; // [batchSize][2, stopWordsLength] on pinned
TensorConstPtr stopWordsLens; // [batchSize] on pinned
TensorConstPtr noRepeatNgramSize; // [batchSize] on gpu
//! Parameters for beam search
//! KV cache index for beam search, [batchSize, beamWidth, maxSeqLen] on gpu
TensorPtr cacheIndirection;
//! Steps of each request, for Variable-Beam-Width-Search, [batchSize]
std::optional<std::vector<SizeType32>> generationSteps;
// Medusa
class MedusaInputs
{
public:
//! [batchSize, maxTokensPerStep, maxMedusaHeads + 1], on gpu
TensorConstPtr medusaPaths;
//! [batchSize, maxTokensPerStep], on gpu
TensorConstPtr medusaTreeIds;
//! [batchSize][maxAcceptedDraftTokensPerStep][maxDraftTokens + 1, vocabSizePadded], on gpu
std::vector<std::vector<TensorPtr>> medusaLogits;
//! [batchSize], on gpu
TensorPtr medusaCurTokensPerStep;
//! [batchSize], on gpu
TensorConstPtr medusaTargetTokensPerStep;
};
class ExternalDraftTokensInputs
{
public:
TensorPtr draftLogits;
TensorPtr draftLogitsHost;
TensorPtr draftProbs;
TensorPtr targetProbs;
TensorPtr numDraftTokens;
TensorPtr numDraftTokensHost;
TensorPtr draftTokenIds;
TensorPtr draftTokenIdsHost;
TensorPtr useDraftLogits;
TensorPtr useDraftLogitsHost;
SizeType32 step;
float constantThreshold;
bool useRandomAcceptanceThreshold;
};
class ExplicitDraftTokensInputs
{
public:
TensorConstPtr nextDraftTokens; // [batchSize, maxNumPaths, maxPathLen]
TensorConstPtr nextFlatTokens; // [batchSize * maxDecodingTokens]
TensorConstPtr nextDraftIndices; // [batchSize, maxNumPaths, maxPathLen]
TensorConstPtr nextDraftProbs; // [batchSize, maxNumPaths, maxDraftPathLen, vocabSize]
TensorConstPtr lastDraftTokens; // [batchSize, maxNumPaths, maxPathLen]
TensorConstPtr lastDraftIndices; // [batchSize, maxNumPaths, maxPathLen]
TensorConstPtr masks; // [batchSize, maxDecodingTokens, maxDecodingTokens], bool
TensorConstPtr packedPositionIds; // [batchSize * maxDecodingTokens]
TensorConstPtr bestPathLengths; // [batchSize]
TensorConstPtr bestPathIndices; // [batchSize]
TensorConstPtr nextGenerationLengths; // [batchSize]
TensorConstPtr lastPositionIdsBase; // [batchSize]
TensorConstPtr lastGenerationLengths; // [batchSize]
TensorConstPtr maxGenLengthDevice; // [1]
TensorConstPtr seqSlots; // [batchSize]
};
struct LookaheadInputs
{
TensorPtr tokensPerStep;
};
struct EagleInputs
{
TensorConstPtr nextDraftTokens; // [batchSize, maxDecodingDraftTokens]
TensorConstPtr nextDraftLens; // [batchSize]
TensorConstPtr nextDraftPaths; // [batchSize, maxDecodingTokens, maxPathLen]
TensorConstPtr lastDraftTokens; // [batchSize, maxNumPaths, maxPathLen]
TensorConstPtr lastDraftLens; // [batchSize]
TensorConstPtr lastDraftPaths; // [batchSize, maxDecodingTokens, maxPathLen]
TensorConstPtr acceptedTokens; // [batchSize, maxPathLen]
TensorConstPtr acceptedLens; // [batchSize]
TensorConstPtr acceptedPathIds; // [batchSize]
TensorConstPtr chunkedContextNextTokens; // [batchSize]
TensorConstPtr seqSlots; // [batchSize]
};
std::optional<MedusaInputs> medusaInputs;
std::optional<ExplicitDraftTokensInputs> explicitDraftTokensInputs;
std::optional<LookaheadInputs> lookaheadInputs;
std::optional<ExternalDraftTokensInputs> externalDraftTokensInputs;
std::optional<EagleInputs> eagleInputs;
};
} // namespace tensorrt_llm::runtime