TensorRT-LLMs/cpp/tensorrt_llm/runtime/workerPool.cpp
石晓伟 b8fc6633ba
Update TensorRT-LLM (#2156)
Co-authored-by: Bruno Magalhaes <bruno.magalhaes@synthesia.io>
2024-08-27 18:20:59 +08:00

72 lines
2.1 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "workerPool.h"
#include "tensorrt_llm/common/cudaUtils.h"
namespace tensorrt_llm::runtime
{
WorkerPool::WorkerPool(std::size_t numWorkers, std::int32_t deviceId)
{
for (std::size_t i = 0; i < numWorkers; ++i)
{
mWorkers.emplace_back(
[this, deviceId]
{
if (deviceId >= 0)
{
TLLM_CUDA_CHECK(cudaSetDevice(deviceId));
}
else
{
TLLM_LOG_WARNING("WorkerPool did not set cuda device");
}
while (true)
{
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->mQueueMutex);
this->condition.wait(lock, [this] { return this->stop || !this->mTasks.empty(); });
if (this->stop && this->mTasks.empty())
{
return;
}
task = std::move(this->mTasks.front());
this->mTasks.pop();
}
task();
}
});
}
}
WorkerPool::~WorkerPool()
{
{
std::unique_lock<std::mutex> lock(mQueueMutex);
stop = true;
}
condition.notify_all();
for (std::thread& worker : mWorkers)
{
worker.join();
}
}
} // namespace tensorrt_llm::runtime