TensorRT-LLMs/cpp/tensorrt_llm/runtime/worldConfig.cpp
Balaram Buddharaju a792c23dcf
[TRTLLM-9465][fix] Swap TP-CP grouping order (#10350)
Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>
2026-01-05 20:08:03 +08:00

195 lines
7.5 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/worldConfig.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/stringUtils.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
#include <algorithm>
#include <numeric>
#include <set>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
WorldConfig::WorldConfig(SizeType32 tensorParallelism, SizeType32 pipelineParallelism, SizeType32 contextParallelism,
SizeType32 rank, SizeType32 gpusPerNode, std::optional<std::vector<SizeType32>> const& deviceIds,
bool enableAttentionDP)
: mTensorParallelism{tensorParallelism}
, mPipelineParallelism{pipelineParallelism}
, mContextParallelism{contextParallelism}
, mRank{rank}
, mGpusPerNode{gpusPerNode}
, mEnableAttentionDP{enableAttentionDP}
, mDeviceIds{deviceIds.value_or(std::vector<SizeType32>(mGpusPerNode))}
{
#if ENABLE_MULTI_DEVICE
auto const numDevices = mDeviceIds.size();
TLLM_CHECK(numDevices > 0);
if (!deviceIds.has_value())
{
mDeviceIds.resize(mGpusPerNode);
std::iota(mDeviceIds.begin(), mDeviceIds.end(), 0);
}
else
{
// total number is at most mGpusPerNode
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(numDevices) <= mGpusPerNode,
"Number of device IDs %zu is greater than GPUs per node %d", numDevices, mGpusPerNode);
// all deviceIds is within the range
TLLM_CHECK(*std::max_element(mDeviceIds.begin(), mDeviceIds.end()) < mGpusPerNode);
TLLM_CHECK(*std::min_element(mDeviceIds.begin(), mDeviceIds.end()) >= 0);
// all ids are unique
std::set<SizeType32> const deviceIdSet(mDeviceIds.begin(), mDeviceIds.end());
TLLM_CHECK_WITH_INFO(
deviceIdSet.size() == numDevices, "Device IDs are not unique %zu != %zu", deviceIdSet.size(), numDevices);
// log a warning if device ids are not contiguous
if (std::adjacent_find(deviceIdSet.begin(), deviceIdSet.end(), [](auto x, auto y) { return y - x != 1; })
!= deviceIdSet.end())
{
TLLM_LOG_WARNING("The user specified device IDs are not contiguous!");
}
TLLM_LOG_INFO("Using user-specified devices: %s", tc::arr2str(mDeviceIds.data(), numDevices).c_str());
}
TLLM_CHECK(mTensorParallelism > 0);
TLLM_CHECK(mPipelineParallelism > 0);
#else
// Overriding to default - single GPU
mRank = 0;
mGpusPerNode = 1;
mTensorParallelism = 1;
mPipelineParallelism = 1;
#endif
}
bool WorldConfig::validMpiConfig() const
{
return COMM_SESSION.getSize() == getSize();
}
WorldConfig WorldConfig::mpi(SizeType32 gpusPerNode, std::optional<SizeType32> tensorParallelism,
std::optional<SizeType32> pipelineParallelism, std::optional<SizeType32> contextParallelism,
std::optional<std::vector<SizeType32>> const& deviceIds, bool enableAttentionDP)
{
#if ENABLE_MULTI_DEVICE
auto& comm = COMM_SESSION;
auto const mpiSize = comm.getSize();
auto const mpiRank = comm.getRank();
auto const mpiLocalSize = LOCAL_COMM_SESSION.getSize();
TLLM_LOG_INFO("MPI size: %d, MPI local size: %d, rank: %d", mpiSize, mpiLocalSize, mpiRank);
auto const pp = pipelineParallelism.value_or(1);
auto const cp = contextParallelism.value_or(1);
auto const tp = tensorParallelism.value_or(mpiSize / pp / cp);
TLLM_LOG_DEBUG("TP: %d, PP: %d, CP: %d, gpusPerNode: %d", tp, pp, cp, gpusPerNode);
TLLM_CHECK_WITH_INFO(
mpiSize == tp * pp * cp, "MPI size %d != TP size %d * PP size %d * CP Size %d", mpiSize, tp, pp, cp);
SizeType32 deviceCount{0};
TLLM_CUDA_CHECK(cudaGetDeviceCount(&deviceCount));
if (deviceCount < std::min(mpiSize, gpusPerNode))
{
TLLM_LOG_WARNING(
"gpusPerNode is %d and mpiSize is %d, but only %d GPUs detected, which is smaller than min(mpiSize, "
"gpusPerNode). gpusPerNode will be set to %d",
gpusPerNode, mpiSize, deviceCount, deviceCount);
gpusPerNode = deviceCount;
if (std::getenv("CUDA_VISIBLE_DEVICES") != nullptr || std::getenv("NVIDIA_VISIBLE_DEVICES") != nullptr)
{
std::ostringstream oss;
if (std::getenv("CUDA_VISIBLE_DEVICES") != nullptr)
{
oss << " CUDA_VISIBLE_DEVICES=" << std::getenv("CUDA_VISIBLE_DEVICES");
}
if (std::getenv("NVIDIA_VISIBLE_DEVICES") != nullptr)
{
oss << " NVIDIA_VISIBLE_DEVICES=" << std::getenv("NVIDIA_VISIBLE_DEVICES");
}
std::string envStr = oss.str();
TLLM_LOG_WARNING(
"Detect%s, please provide the full device list instead of limiting to device list, "
"otherwise allreduce performance may be sub-optimal "
"since custom allreduce kernel relies on P2P access to peer devices.",
envStr.c_str());
}
}
return WorldConfig{tp, pp, cp, mpiRank, gpusPerNode, deviceIds, enableAttentionDP};
#else
return WorldConfig();
#endif
}
std::vector<SizeType32> WorldConfig::getPipelineParallelGroup() const
{
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
// rank = ppRank * (tp * cp) + tpRank * cp + cpRank
// PP group: all ranks with same (tpRank, cpRank) but different ppRank.
auto const pp = getPipelineParallelism();
auto const tp = getTensorParallelism();
auto const cp = getContextParallelism();
auto const worldSize = getSize();
std::vector<SizeType32> group;
group.reserve(pp);
for (SizeType32 idx = getTensorParallelRank() * cp + getContextParallelRank(); idx < worldSize; idx += tp * cp)
{
group.push_back(idx);
}
return group;
}
std::vector<SizeType32> WorldConfig::getTensorParallelGroup() const
{
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
// rank = ppRank * (tp * cp) + tpRank * cp + cpRank
// TP group: all ranks with same (ppRank, cpRank) but different tpRank.
auto const tp = getTensorParallelism();
auto const cp = getContextParallelism();
auto const rank = getRank();
auto const tpRank = getTensorParallelRank();
std::vector<SizeType32> group;
group.reserve(tp);
for (SizeType32 idx = 0; idx < tp; idx++)
{
group.push_back(rank - tpRank * cp + idx * cp);
}
return group;
}
std::vector<SizeType32> WorldConfig::getContextParallelGroup() const
{
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
// rank = ppRank * (tp * cp) + tpRank * cp + cpRank
// CP group: all ranks with same (ppRank, tpRank) but different cpRank.
auto const cp = getContextParallelism();
auto const rank = getRank();
auto const cpRank = getContextParallelRank();
std::vector<SizeType32> group;
group.reserve(cp);
for (SizeType32 idx = 0; idx < cp; idx++)
{
group.push_back(rank - cpRank + idx);
}
return group;
}