mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
195 lines
7.5 KiB
C++
195 lines
7.5 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/runtime/worldConfig.h"
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/stringUtils.h"
|
|
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
|
|
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <set>
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
namespace tc = tensorrt_llm::common;
|
|
|
|
WorldConfig::WorldConfig(SizeType32 tensorParallelism, SizeType32 pipelineParallelism, SizeType32 contextParallelism,
|
|
SizeType32 rank, SizeType32 gpusPerNode, std::optional<std::vector<SizeType32>> const& deviceIds,
|
|
bool enableAttentionDP)
|
|
: mTensorParallelism{tensorParallelism}
|
|
, mPipelineParallelism{pipelineParallelism}
|
|
, mContextParallelism{contextParallelism}
|
|
, mRank{rank}
|
|
, mGpusPerNode{gpusPerNode}
|
|
, mEnableAttentionDP{enableAttentionDP}
|
|
, mDeviceIds{deviceIds.value_or(std::vector<SizeType32>(mGpusPerNode))}
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
auto const numDevices = mDeviceIds.size();
|
|
TLLM_CHECK(numDevices > 0);
|
|
|
|
if (!deviceIds.has_value())
|
|
{
|
|
mDeviceIds.resize(mGpusPerNode);
|
|
std::iota(mDeviceIds.begin(), mDeviceIds.end(), 0);
|
|
}
|
|
else
|
|
{
|
|
// total number is at most mGpusPerNode
|
|
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(numDevices) <= mGpusPerNode,
|
|
"Number of device IDs %zu is greater than GPUs per node %d", numDevices, mGpusPerNode);
|
|
|
|
// all deviceIds is within the range
|
|
TLLM_CHECK(*std::max_element(mDeviceIds.begin(), mDeviceIds.end()) < mGpusPerNode);
|
|
TLLM_CHECK(*std::min_element(mDeviceIds.begin(), mDeviceIds.end()) >= 0);
|
|
|
|
// all ids are unique
|
|
std::set<SizeType32> const deviceIdSet(mDeviceIds.begin(), mDeviceIds.end());
|
|
TLLM_CHECK_WITH_INFO(
|
|
deviceIdSet.size() == numDevices, "Device IDs are not unique %zu != %zu", deviceIdSet.size(), numDevices);
|
|
|
|
// log a warning if device ids are not contiguous
|
|
if (std::adjacent_find(deviceIdSet.begin(), deviceIdSet.end(), [](auto x, auto y) { return y - x != 1; })
|
|
!= deviceIdSet.end())
|
|
{
|
|
TLLM_LOG_WARNING("The user specified device IDs are not contiguous!");
|
|
}
|
|
TLLM_LOG_INFO("Using user-specified devices: %s", tc::arr2str(mDeviceIds.data(), numDevices).c_str());
|
|
}
|
|
|
|
TLLM_CHECK(mTensorParallelism > 0);
|
|
TLLM_CHECK(mPipelineParallelism > 0);
|
|
#else
|
|
// Overriding to default - single GPU
|
|
mRank = 0;
|
|
mGpusPerNode = 1;
|
|
mTensorParallelism = 1;
|
|
mPipelineParallelism = 1;
|
|
#endif
|
|
}
|
|
|
|
bool WorldConfig::validMpiConfig() const
|
|
{
|
|
return COMM_SESSION.getSize() == getSize();
|
|
}
|
|
|
|
WorldConfig WorldConfig::mpi(SizeType32 gpusPerNode, std::optional<SizeType32> tensorParallelism,
|
|
std::optional<SizeType32> pipelineParallelism, std::optional<SizeType32> contextParallelism,
|
|
std::optional<std::vector<SizeType32>> const& deviceIds, bool enableAttentionDP)
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
auto& comm = COMM_SESSION;
|
|
auto const mpiSize = comm.getSize();
|
|
auto const mpiRank = comm.getRank();
|
|
auto const mpiLocalSize = LOCAL_COMM_SESSION.getSize();
|
|
TLLM_LOG_INFO("MPI size: %d, MPI local size: %d, rank: %d", mpiSize, mpiLocalSize, mpiRank);
|
|
auto const pp = pipelineParallelism.value_or(1);
|
|
auto const cp = contextParallelism.value_or(1);
|
|
auto const tp = tensorParallelism.value_or(mpiSize / pp / cp);
|
|
TLLM_LOG_DEBUG("TP: %d, PP: %d, CP: %d, gpusPerNode: %d", tp, pp, cp, gpusPerNode);
|
|
TLLM_CHECK_WITH_INFO(
|
|
mpiSize == tp * pp * cp, "MPI size %d != TP size %d * PP size %d * CP Size %d", mpiSize, tp, pp, cp);
|
|
SizeType32 deviceCount{0};
|
|
TLLM_CUDA_CHECK(cudaGetDeviceCount(&deviceCount));
|
|
if (deviceCount < std::min(mpiSize, gpusPerNode))
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"gpusPerNode is %d and mpiSize is %d, but only %d GPUs detected, which is smaller than min(mpiSize, "
|
|
"gpusPerNode). gpusPerNode will be set to %d",
|
|
gpusPerNode, mpiSize, deviceCount, deviceCount);
|
|
gpusPerNode = deviceCount;
|
|
if (std::getenv("CUDA_VISIBLE_DEVICES") != nullptr || std::getenv("NVIDIA_VISIBLE_DEVICES") != nullptr)
|
|
{
|
|
std::ostringstream oss;
|
|
if (std::getenv("CUDA_VISIBLE_DEVICES") != nullptr)
|
|
{
|
|
oss << " CUDA_VISIBLE_DEVICES=" << std::getenv("CUDA_VISIBLE_DEVICES");
|
|
}
|
|
if (std::getenv("NVIDIA_VISIBLE_DEVICES") != nullptr)
|
|
{
|
|
oss << " NVIDIA_VISIBLE_DEVICES=" << std::getenv("NVIDIA_VISIBLE_DEVICES");
|
|
}
|
|
std::string envStr = oss.str();
|
|
TLLM_LOG_WARNING(
|
|
"Detect%s, please provide the full device list instead of limiting to device list, "
|
|
"otherwise allreduce performance may be sub-optimal "
|
|
"since custom allreduce kernel relies on P2P access to peer devices.",
|
|
envStr.c_str());
|
|
}
|
|
}
|
|
|
|
return WorldConfig{tp, pp, cp, mpiRank, gpusPerNode, deviceIds, enableAttentionDP};
|
|
#else
|
|
return WorldConfig();
|
|
#endif
|
|
}
|
|
|
|
std::vector<SizeType32> WorldConfig::getPipelineParallelGroup() const
|
|
{
|
|
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
|
|
// rank = ppRank * (tp * cp) + tpRank * cp + cpRank
|
|
// PP group: all ranks with same (tpRank, cpRank) but different ppRank.
|
|
auto const pp = getPipelineParallelism();
|
|
auto const tp = getTensorParallelism();
|
|
auto const cp = getContextParallelism();
|
|
auto const worldSize = getSize();
|
|
std::vector<SizeType32> group;
|
|
group.reserve(pp);
|
|
for (SizeType32 idx = getTensorParallelRank() * cp + getContextParallelRank(); idx < worldSize; idx += tp * cp)
|
|
{
|
|
group.push_back(idx);
|
|
}
|
|
return group;
|
|
}
|
|
|
|
std::vector<SizeType32> WorldConfig::getTensorParallelGroup() const
|
|
{
|
|
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
|
|
// rank = ppRank * (tp * cp) + tpRank * cp + cpRank
|
|
// TP group: all ranks with same (ppRank, cpRank) but different tpRank.
|
|
auto const tp = getTensorParallelism();
|
|
auto const cp = getContextParallelism();
|
|
auto const rank = getRank();
|
|
auto const tpRank = getTensorParallelRank();
|
|
std::vector<SizeType32> group;
|
|
group.reserve(tp);
|
|
for (SizeType32 idx = 0; idx < tp; idx++)
|
|
{
|
|
group.push_back(rank - tpRank * cp + idx * cp);
|
|
}
|
|
return group;
|
|
}
|
|
|
|
std::vector<SizeType32> WorldConfig::getContextParallelGroup() const
|
|
{
|
|
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
|
|
// rank = ppRank * (tp * cp) + tpRank * cp + cpRank
|
|
// CP group: all ranks with same (ppRank, tpRank) but different cpRank.
|
|
auto const cp = getContextParallelism();
|
|
auto const rank = getRank();
|
|
auto const cpRank = getContextParallelRank();
|
|
std::vector<SizeType32> group;
|
|
group.reserve(cp);
|
|
for (SizeType32 idx = 0; idx < cp; idx++)
|
|
{
|
|
group.push_back(rank - cpRank + idx);
|
|
}
|
|
return group;
|
|
}
|