TensorRT-LLMs/examples/llm-api/llm_inference_async.py
Erin e277766f0d
chores: merge examples for v1.0 doc (#5736)
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>
2025-07-08 21:00:42 -07:00

44 lines
1.4 KiB
Python

### :section Basics
### :title Generate text asynchronously
### :order 1
import asyncio
from tensorrt_llm import LLM, SamplingParams
def main():
# model could accept HF model name or a path to local HF model.
llm = LLM(model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
# Sample prompts.
prompts = [
"Hello, my name is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Async based on Python coroutines
async def task(prompt: str):
output = await llm.generate_async(prompt, sampling_params)
print(
f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
)
async def main():
tasks = [task(prompt) for prompt in prompts]
await asyncio.gather(*tasks)
asyncio.run(main())
# Got output like follows:
# Prompt: 'Hello, my name is', Generated text: '\n\nJane Smith. I am a student pursuing my degree in Computer Science at [university]. I enjoy learning new things, especially technology and programming'
# Prompt: 'The capital of France is', Generated text: 'Paris.'
# Prompt: 'The future of AI is', Generated text: 'an exciting time for us. We are constantly researching, developing, and improving our platform to create the most advanced and efficient model available. We are'
if __name__ == '__main__':
main()