mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
119 lines
4.5 KiB
Python
119 lines
4.5 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import random
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Iterable, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
import tensorrt_llm.profiler as profiler
|
|
|
|
from ..llmapi import RequestOutput
|
|
from ..logger import logger
|
|
from ..sampling_params import SamplingParams
|
|
|
|
|
|
class Evaluator(ABC):
|
|
|
|
def __init__(self,
|
|
random_seed: int = 0,
|
|
apply_chat_template: bool = False,
|
|
fewshot_as_multiturn: bool = False,
|
|
system_prompt: Optional[str] = None,
|
|
chat_template_kwargs: Optional[dict[str, Any]] = None):
|
|
random.seed(random_seed)
|
|
np.random.seed(random_seed)
|
|
torch.manual_seed(random_seed)
|
|
self.apply_chat_template = apply_chat_template
|
|
self.fewshot_as_multiturn = fewshot_as_multiturn
|
|
self.system_prompt = system_prompt
|
|
self.chat_template_kwargs = chat_template_kwargs
|
|
|
|
@abstractmethod
|
|
def generate_samples(self) -> Iterable[tuple]:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def compute_score(self, outputs: List[RequestOutput], references: List[str],
|
|
*auxiliaries) -> float:
|
|
raise NotImplementedError()
|
|
|
|
def do_apply_chat_template(self, llm: Any,
|
|
prompt: Union[str, List[dict]]) -> str:
|
|
if isinstance(prompt, str):
|
|
messages = [{"role": "user", "content": prompt}]
|
|
else:
|
|
messages = prompt
|
|
if self.system_prompt is not None:
|
|
messages = [{
|
|
"role": "system",
|
|
"content": self.system_prompt
|
|
}] + messages
|
|
return llm.tokenizer.apply_chat_template(messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True,
|
|
**(self.chat_template_kwargs
|
|
or {}))
|
|
|
|
def _get_sampline_params(self, sampling_params: Optional[SamplingParams],
|
|
sampling_args: Optional[dict]) -> SamplingParams:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
else:
|
|
sampling_params = copy.deepcopy(sampling_params)
|
|
|
|
if sampling_args is not None:
|
|
for key, value in sampling_args.items():
|
|
setattr(sampling_params, key, value)
|
|
return sampling_params
|
|
|
|
def evaluate(self,
|
|
llm: Any,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
streaming: bool = False) -> float:
|
|
profiler.start("trtllm exec")
|
|
outputs, references, auxiliaries = [], [], []
|
|
for prompt, sampling_args, reference, *aux in tqdm(
|
|
self.generate_samples(), desc="Submitting requests"):
|
|
if self.apply_chat_template:
|
|
prompt = self.do_apply_chat_template(llm, prompt)
|
|
sampling_params = self._get_sampline_params(sampling_params,
|
|
sampling_args)
|
|
output = llm.generate_async(
|
|
prompt,
|
|
sampling_params,
|
|
streaming=streaming,
|
|
)
|
|
outputs.append(output)
|
|
references.append(reference)
|
|
auxiliaries.append(aux)
|
|
results = []
|
|
for output in tqdm(outputs, desc="Fetching responses"):
|
|
results.append(output.result())
|
|
profiler.stop("trtllm exec")
|
|
elapsed_time = profiler.elapsed_time_in_sec("trtllm exec")
|
|
logger.info(f"TRTLLM execution time: {elapsed_time:.3f} seconds.")
|
|
profiler.reset("trtllm exec")
|
|
|
|
score = self.compute_score(results, references, *zip(*auxiliaries))
|
|
return score
|
|
|
|
@staticmethod
|
|
def command(ctx, *args, **kwargs) -> None:
|
|
raise NotImplementedError()
|