TensorRT-LLMs/tensorrt_llm/evaluate/interface.py
zhhuang-nv 7a2bab93f0
[None][test] Add post merge test for Seed-OSS-36B-Instruct (#8321)
Signed-off-by: Zhen Huang <145532724+zhhuang-nv@users.noreply.github.com>
2025-10-17 02:30:33 -07:00

119 lines
4.5 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
from abc import ABC, abstractmethod
from typing import Any, Iterable, List, Optional, Union
import numpy as np
import torch
from tqdm import tqdm
import tensorrt_llm.profiler as profiler
from ..llmapi import RequestOutput
from ..logger import logger
from ..sampling_params import SamplingParams
class Evaluator(ABC):
def __init__(self,
random_seed: int = 0,
apply_chat_template: bool = False,
fewshot_as_multiturn: bool = False,
system_prompt: Optional[str] = None,
chat_template_kwargs: Optional[dict[str, Any]] = None):
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
self.apply_chat_template = apply_chat_template
self.fewshot_as_multiturn = fewshot_as_multiturn
self.system_prompt = system_prompt
self.chat_template_kwargs = chat_template_kwargs
@abstractmethod
def generate_samples(self) -> Iterable[tuple]:
raise NotImplementedError()
@abstractmethod
def compute_score(self, outputs: List[RequestOutput], references: List[str],
*auxiliaries) -> float:
raise NotImplementedError()
def do_apply_chat_template(self, llm: Any,
prompt: Union[str, List[dict]]) -> str:
if isinstance(prompt, str):
messages = [{"role": "user", "content": prompt}]
else:
messages = prompt
if self.system_prompt is not None:
messages = [{
"role": "system",
"content": self.system_prompt
}] + messages
return llm.tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True,
**(self.chat_template_kwargs
or {}))
def _get_sampline_params(self, sampling_params: Optional[SamplingParams],
sampling_args: Optional[dict]) -> SamplingParams:
if sampling_params is None:
sampling_params = SamplingParams()
else:
sampling_params = copy.deepcopy(sampling_params)
if sampling_args is not None:
for key, value in sampling_args.items():
setattr(sampling_params, key, value)
return sampling_params
def evaluate(self,
llm: Any,
sampling_params: Optional[SamplingParams] = None,
streaming: bool = False) -> float:
profiler.start("trtllm exec")
outputs, references, auxiliaries = [], [], []
for prompt, sampling_args, reference, *aux in tqdm(
self.generate_samples(), desc="Submitting requests"):
if self.apply_chat_template:
prompt = self.do_apply_chat_template(llm, prompt)
sampling_params = self._get_sampline_params(sampling_params,
sampling_args)
output = llm.generate_async(
prompt,
sampling_params,
streaming=streaming,
)
outputs.append(output)
references.append(reference)
auxiliaries.append(aux)
results = []
for output in tqdm(outputs, desc="Fetching responses"):
results.append(output.result())
profiler.stop("trtllm exec")
elapsed_time = profiler.elapsed_time_in_sec("trtllm exec")
logger.info(f"TRTLLM execution time: {elapsed_time:.3f} seconds.")
profiler.reset("trtllm exec")
score = self.compute_score(results, references, *zip(*auxiliaries))
return score
@staticmethod
def command(ctx, *args, **kwargs) -> None:
raise NotImplementedError()