mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Co-authored-by: DreamGenX <x@dreamgen.com> Co-authored-by: Ace-RR <78812427+Ace-RR@users.noreply.github.com> Co-authored-by: bprus <39293131+bprus@users.noreply.github.com> Co-authored-by: janpetrov <janpetrov@icloud.com>
201 lines
8.0 KiB
Python
201 lines
8.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
# isort: off
|
|
import torch
|
|
# isort: on
|
|
from parameterized import parameterized
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import create_session, run_session
|
|
|
|
|
|
class TestGatherND(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@parameterized.expand([
|
|
(
|
|
[
|
|
[91, 92, 93, 95, 94, 96, 97, 00,
|
|
00], # 7 effective tokens and 2 ignored.
|
|
[93, 94, 95, 92, 95, 96, 93, 97, 96], # 9 effective tokens
|
|
],
|
|
[
|
|
[
|
|
[0, 1, 2, 3],
|
|
[0, 1, 4, 5],
|
|
[0, 1, 2, 6],
|
|
],
|
|
[
|
|
[0, 1, 2, 3],
|
|
[0, 4, 5, 6],
|
|
[0, 1, 7, 8],
|
|
],
|
|
],
|
|
[ # Assuming a batch of two sequences, each has 3 beams of 4 tokens.
|
|
[
|
|
[91, 92, 93, 95],
|
|
[91, 92, 94, 96],
|
|
[91, 92, 93, 97],
|
|
],
|
|
[
|
|
[93, 94, 95, 92],
|
|
[93, 95, 96, 93],
|
|
[93, 94, 97, 96],
|
|
],
|
|
],
|
|
),
|
|
([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], [[1, 0, 1], [0,
|
|
1, 0]], [[[2, 3],
|
|
[0, 1],
|
|
[2, 3]],
|
|
[[4, 5],
|
|
[6, 7],
|
|
[4, 5]]]),
|
|
(
|
|
torch.rand((2, 9, 4), dtype=torch.float32, device="cuda"),
|
|
torch.tensor([[[0, 1, 2, 3, 4, 5], [0, 1, 3, 4, 5, 6],
|
|
[0, 1, 4, 5, 6, 7], [0, 2, 3, 4, 6, 8]],
|
|
[[0, 1, 2, 3, 4, 5], [0, 1, 3, 4, 5, 7],
|
|
[0, 2, 3, 5, 6, 7], [0, 3, 4, 5, 6, 7]]],
|
|
device="cuda"),
|
|
[],
|
|
),
|
|
])
|
|
def test_gatherND(self, data, indices, ref):
|
|
dtype = "float32"
|
|
data = data if isinstance(data,
|
|
torch.Tensor) else torch.tensor(data).cuda()
|
|
indices = indices if isinstance(
|
|
indices, torch.Tensor) else torch.tensor(indices).cuda()
|
|
ref = ref if isinstance(ref, torch.Tensor) else torch.tensor(ref).cuda()
|
|
indices = indices.unsqueeze(-1) # needed for TRT gatherND
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
|
|
d = Tensor(name='d',
|
|
shape=data.shape,
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(data.dtype))
|
|
idx = Tensor(name='idx',
|
|
shape=indices.shape,
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(indices.dtype))
|
|
|
|
output = tensorrt_llm.functional.gather_nd(d, idx, 1)
|
|
output.mark_output('output')
|
|
|
|
# trt run
|
|
session = create_session(builder, network, precision=dtype)
|
|
inputs = {'d': data, 'idx': indices}
|
|
outputs = run_session(session, inputs)
|
|
# compare diff
|
|
indices = indices.squeeze(-1)
|
|
tref = torch.stack([data[i, indices[i]] for i in range(data.shape[0])])
|
|
if ref.numel() == 0:
|
|
torch.testing.assert_close(tref, outputs['output'])
|
|
else:
|
|
torch.testing.assert_close(ref, outputs['output'])
|
|
torch.testing.assert_close(ref, tref)
|
|
|
|
@parameterized.expand([
|
|
([[91, 92, 93, 95, -1, -1, 94, 96, -1, -1, -1, 97],
|
|
[93, 94, 95, 92, -1, 95, 96, 93, -1, -1, 97, 96]], [[0, 0], [0, 1],
|
|
[0, 2], [0, 3],
|
|
[0, 6], [0, 7],
|
|
[0, 11], [1, 0],
|
|
[1, 1], [1, 2],
|
|
[1, 3], [1, 5],
|
|
[1, 6], [1, 7],
|
|
[1, 10], [1, 11]],
|
|
[91, 92, 93, 95, 94, 96, 97, 93, 94, 95, 92, 95, 96, 93, 97, 96])
|
|
])
|
|
def test_gatherND_b0(self, data, indices, ref):
|
|
dtype = "float32"
|
|
data = data if isinstance(data,
|
|
torch.Tensor) else torch.tensor(data).cuda()
|
|
indices = indices if isinstance(
|
|
indices, torch.Tensor) else torch.tensor(indices).cuda()
|
|
ref = ref if isinstance(ref, torch.Tensor) else torch.tensor(ref).cuda()
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
d = Tensor(name='d',
|
|
shape=data.shape,
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(data.dtype))
|
|
idx = Tensor(name='idx',
|
|
shape=indices.shape,
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(indices.dtype))
|
|
|
|
output = tensorrt_llm.functional.gather_nd(d, idx, 0)
|
|
output.mark_output('output')
|
|
|
|
# trt run
|
|
session = create_session(builder, network, precision=dtype)
|
|
inputs = {'d': data, 'idx': indices}
|
|
outputs = run_session(session, inputs)
|
|
|
|
# compare diff
|
|
tref = data[indices[:, 0], indices[:, 1]]
|
|
if ref.numel() == 0:
|
|
torch.testing.assert_close(tref, outputs['output'])
|
|
else:
|
|
torch.testing.assert_close(ref, outputs['output'])
|
|
torch.testing.assert_close(ref, tref)
|
|
|
|
def test_gatherND_selectH(self):
|
|
dtype = "float32"
|
|
# This usecase is used to gather for validated end-tokens (diff stopping point for diff seqs)
|
|
data = torch.rand((2, 9, 4), dtype=torch.float32, device="cuda")
|
|
indices = torch.randint(9, size=(2, ), dtype=torch.int32, device="cuda")
|
|
indices = torch.stack(
|
|
[torch.arange(2, dtype=torch.int32).cuda(), indices], dim=1)
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
d = Tensor(name='d',
|
|
shape=data.shape,
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(data.dtype))
|
|
idx = Tensor(name='idx',
|
|
shape=indices.shape,
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(indices.dtype))
|
|
|
|
output = tensorrt_llm.functional.gather_nd(d, idx, 0)
|
|
output.mark_output('output')
|
|
|
|
# trt run
|
|
session = create_session(builder, network, precision=dtype)
|
|
inputs = {'d': data, 'idx': indices}
|
|
outputs = run_session(session, inputs)
|
|
|
|
# pytorch run
|
|
ref = data[indices[:, 0], indices[:, 1]]
|
|
|
|
# compare diff
|
|
torch.testing.assert_close(ref, outputs['output'])
|