TensorRT-LLMs/cpp/tests/README.md
Robin Kobus f58d4698c8
chore: Clean up cpp runtime (#3505)
* chore: Remove unused tensors from DecoderBuffers

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* fix: Remove unused argument from readme

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* chore: remove unused tensor

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Remove unnecessary newOutputTokens

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Remove unnecessary event in getDecoderSlotHostOutputs

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

---------

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-04-14 18:00:03 +08:00

120 lines
4.6 KiB
Markdown

# C++ Tests
This document explains how to build and run the C++ tests, and the included [resources](resources).
## All-in-one script
The Pytest script [test_cpp.py](../../tests/integration/defs/test_cpp.py) builds TRT-LLM, builds engines, and generates expected outputs and executes the C++ tests all in one go.
To get an overview of the tests and their parameterization, call:
```bash
pytest tests/integration/defs/test_cpp.py --collect-only
```
All tests take the number of the CUDA architecture of the GPU you wish to use as a parameter e.g. 90 for Hopper.
It is possible to choose unit tests or a single model for end-to-end tests.
Example calls could look like this:
```bash
export LLM_MODELS_ROOT="/path/to/model_cache"
pytest tests/integration/defs/test_cpp.py::test_unit_tests[90]
pytest tests/integration/defs/test_cpp.py::test_model[llama-90]
pytest tests/integration/defs/test_cpp.py::test_benchmarks[gpt-90]
pytest tests/integration/defs/test_cpp.py::test_multi_gpu[90]
```
## Manual steps
### Compile
From the top-level directory call:
```bash
CPP_BUILD_DIR=cpp/build
python3 scripts/build_wheel.py -a "80-real;86-real" --build_dir ${CPP_BUILD_DIR}
pip install -r requirements-dev.txt
pip install build/tensorrt_llm*.whl
cd $CPP_BUILD_DIR && make -j$(nproc) google-tests
```
Single tests can be executed from `CPP_BUILD_DIR/tests`, e.g.
```bash
./$CPP_BUILD_DIR/tests/allocatorTest
```
### End-to-end tests
`gptSessionTest`,`trtGptModelRealDecoderTest` and `executorTest` require pre-built TensorRT engines, which are loaded in the tests. They also require data files which are stored in [cpp/tests/resources/data](resources/data).
#### Build engines
[Scripts](resources/scripts) are provided that download the GPT2 and GPT-J models from Huggingface and convert them to TensorRT engines.
The weights and built engines are stored under [cpp/tests/resources/models](resources/models).
To build the engines from the top-level directory:
```bash
PYTHONPATH=examples/gpt:$PYTHONPATH python3 cpp/tests/resources/scripts/build_gpt_engines.py
PYTHONPATH=examples/gptj:$PYTHONPATH python3 cpp/tests/resources/scripts/build_gptj_engines.py
PYTHONPATH=examples/llama:$PYTHONPATH python3 cpp/tests/resources/scripts/build_llama_engines.py
PYTHONPATH=examples/chatglm:$PYTHONPATH python3 cpp/tests/resources/scripts/build_chatglm_engines.py
PYTHONPATH=examples/medusa:$PYTHONPATH python3 cpp/tests/resources/scripts/build_medusa_engines.py
PYTHONPATH=examples/eagle:$PYTHONPATH python3 cpp/tests/resources/scripts/build_eagle_engines.py
PYTHONPATH=examples/redrafter:$PYTHONPATH python3 cpp/tests/resources/scripts/build_redrafter_engines.py
```
It is possible to build engines with tensor and pipeline parallelism for LLaMA using 4 GPUs.
```bash
PYTHONPATH=examples/llama python3 cpp/tests/resources/scripts/build_llama_engines.py --only_multi_gpu
```
If there is an issue finding model_spec.so in engine building, manually build model_spec.so by
```bash
make -C cpp/build/ modelSpec
```
#### Generate expected output
End-to-end tests read inputs and expected outputs from Numpy files located at [cpp/tests/resources/data](resources/data). The expected outputs can be generated using [scripts](resources/scripts) which employ the Python runtime to run the built engines:
```bash
PYTHONPATH=examples:$PYTHONPATH python3 cpp/tests/resources/scripts/generate_expected_gpt_output.py
PYTHONPATH=examples:$PYTHONPATH python3 cpp/tests/resources/scripts/generate_expected_gptj_output.py
PYTHONPATH=examples:$PYTHONPATH python3 cpp/tests/resources/scripts/generate_expected_llama_output.py
PYTHONPATH=examples:$PYTHONPATH python3 cpp/tests/resources/scripts/generate_expected_chatglm_output.py
PYTHONPATH=examples:$PYTHONPATH python3 cpp/tests/resources/scripts/generate_expected_medusa_output.py
PYTHONPATH=examples:$PYTHONPATH python3 cpp/tests/resources/scripts/generate_expected_eagle_output.py
PYTHONPATH=examples:$PYTHONPATH python3 cpp/tests/resources/scripts/generate_expected_redrafter_output.py
```
#### Generate data with tensor and pipeline parallelism
It is possible to generate tensor and pipeline parallelism data for LLaMA using 4 GPUs. To generate results from the top-level directory:
```bash
PYTHONPATH=examples mpirun -n 4 python3 cpp/tests/resources/scripts/generate_expected_llama_output.py --only_multi_gpu
```
#### Run test
After building the engines and generating the expected output execute the tests
```bash
./$CPP_BUILD_DIR/tests/gptSessionTest
```
### Run all tests with ctest
To run all tests and produce an xml report, call
```bash
./$CPP_BUILD_DIR/ctest --output-on-failure --output-junit "cpp-test-report.xml"
```