TensorRT-LLMs/examples/python_plugin/plugin_lib/lookup_plugin.py
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

61 lines
2.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Sequence
import torch
from tensorrt_llm import PluginBase
from tensorrt_llm._utils import TensorWrapper, convert_to_torch_tensor
from tensorrt_llm.python_plugin import SymTensor, trtllm_plugin
from .lookup_kernel import lookup_kernel
@trtllm_plugin("TritonLookUp")
class LookUpPlugin(PluginBase):
def __init__(self, use_torch_tensor, fp32_output):
super().__init__()
self.use_torch_tensor = use_torch_tensor
self.fp32_output = fp32_output
def shape_dtype_inference(self, inputs: Sequence[SymTensor]) -> SymTensor:
shape = inputs[1].shape
shape[0] = inputs[0].shape[0] + inputs[1].shape[0] - inputs[1].shape[0]
return SymTensor(
inputs[1].dtype if not self.fp32_output else torch.float32, shape)
def forward(self, inputs: Sequence[TensorWrapper],
outputs: Sequence[TensorWrapper]):
assert len(inputs) == 2
assert inputs[0].dtype in [torch.int32 or torch.int64]
assert inputs[1].dtype in [torch.float32, torch.float16, torch.bfloat16]
assert (self.fp32_output and outputs[0].dtype
== torch.float32) or outputs[0].dtype == inputs[1].dtype
x = inputs[0]
y = inputs[1]
z = outputs[0]
if self.use_torch_tensor:
x = convert_to_torch_tensor(x)
y = convert_to_torch_tensor(y)
z = convert_to_torch_tensor(z)
MAX_BLOCK_NUM = 65536
MAX_BLOCK_SIZE = 512
grid = lambda meta: (min(MAX_BLOCK_NUM, x.shape[0]) * min(
MAX_BLOCK_SIZE, y.shape[1]), )
lookup_kernel[grid](x, y, z, y.shape[0], y.shape[1], x.shape[0])