mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
61 lines
2.3 KiB
Python
61 lines
2.3 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Sequence
|
|
|
|
import torch
|
|
|
|
from tensorrt_llm import PluginBase
|
|
from tensorrt_llm._utils import TensorWrapper, convert_to_torch_tensor
|
|
from tensorrt_llm.python_plugin import SymTensor, trtllm_plugin
|
|
|
|
from .lookup_kernel import lookup_kernel
|
|
|
|
|
|
@trtllm_plugin("TritonLookUp")
|
|
class LookUpPlugin(PluginBase):
|
|
|
|
def __init__(self, use_torch_tensor, fp32_output):
|
|
super().__init__()
|
|
self.use_torch_tensor = use_torch_tensor
|
|
self.fp32_output = fp32_output
|
|
|
|
def shape_dtype_inference(self, inputs: Sequence[SymTensor]) -> SymTensor:
|
|
shape = inputs[1].shape
|
|
shape[0] = inputs[0].shape[0] + inputs[1].shape[0] - inputs[1].shape[0]
|
|
return SymTensor(
|
|
inputs[1].dtype if not self.fp32_output else torch.float32, shape)
|
|
|
|
def forward(self, inputs: Sequence[TensorWrapper],
|
|
outputs: Sequence[TensorWrapper]):
|
|
assert len(inputs) == 2
|
|
assert inputs[0].dtype in [torch.int32 or torch.int64]
|
|
assert inputs[1].dtype in [torch.float32, torch.float16, torch.bfloat16]
|
|
assert (self.fp32_output and outputs[0].dtype
|
|
== torch.float32) or outputs[0].dtype == inputs[1].dtype
|
|
|
|
x = inputs[0]
|
|
y = inputs[1]
|
|
z = outputs[0]
|
|
if self.use_torch_tensor:
|
|
x = convert_to_torch_tensor(x)
|
|
y = convert_to_torch_tensor(y)
|
|
z = convert_to_torch_tensor(z)
|
|
MAX_BLOCK_NUM = 65536
|
|
MAX_BLOCK_SIZE = 512
|
|
grid = lambda meta: (min(MAX_BLOCK_NUM, x.shape[0]) * min(
|
|
MAX_BLOCK_SIZE, y.shape[1]), )
|
|
lookup_kernel[grid](x, y, z, y.shape[0], y.shape[1], x.shape[0])
|