TensorRT-LLMs/cpp/tensorrt_llm/layers/topPSamplingLayer.cu
Kaiyu Xie bca9a33b02
Update TensorRT-LLM (#2008)
* Update TensorRT-LLM

---------

Co-authored-by: Timur Abishev <abishev.timur@gmail.com>
Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com>
Co-authored-by: Saeyoon Oh <saeyoon.oh@furiosa.ai>
Co-authored-by: hattizai <hattizai@gmail.com>
2024-07-23 23:05:09 +08:00

369 lines
16 KiB
Plaintext

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include "tensorrt_llm/layers/defaultDecodingParams.h"
#include "tensorrt_llm/layers/layerUtils.h"
#include "topPSamplingLayer.h"
#include <algorithm>
#include <float.h>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm::layers
{
static __global__ void setTopPRuntimeArgs(SizeType32 batchSize, SizeType32 topK, SizeType32* topKs,
SizeType32 topKsSize, float topP, float* topPs, SizeType32 topPsSize, bool* skipDecode,
SizeType32 const* batchSlots, float* initialTopPBuf)
{
/**
* @brief Setup the runtime arguments for topp, broadcasting top_p to top_ps
and top_k to top_ks.
*/
auto index = static_cast<SizeType32>(blockIdx.x * blockDim.x + threadIdx.x);
for (SizeType32 bi = index; bi < batchSize; bi += static_cast<SizeType32>(gridDim.x * blockDim.x))
{
auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi;
auto k = topKsSize > 1 ? topKs[batchSlot] : topK;
auto const p = topPsSize > 1 ? topPs[batchSlot] : topP;
if (k == 0 && p == 0.0f)
{
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
// equivalent to greedy search. So, we set the topk = 1 as an alternative
// solution.
k = 1;
}
topKs[batchSlot] = k;
topPs[batchSlot] = p;
skipDecode[batchSlot] = k > 0;
initialTopPBuf[batchSlot] = topPs[batchSlot];
}
}
template <typename T>
TopPSamplingLayer<T>::TopPSamplingLayer(DecoderDomain const& decoderDomain,
std::shared_ptr<BufferManager> bufferManager, bool isDeterministic, bool isAirTopP)
: BaseLayer(decoderDomain, bufferManager)
, mIsDeterministic(isDeterministic)
, mIsAirTopP(isAirTopP)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
int deviceId;
tc::check_cuda_error(cudaGetDevice(&deviceId)); // Get the correct device id
tc::check_cuda_error(cudaGetDeviceProperties(&mDeviceProp, deviceId));
allocateBuffer(mDecoderDomain.getBatchSize());
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::allocateBuffer(SizeType32 batchSize)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (mIsAirTopP == false)
{
mWorkspaceSize = getTopPWorkspaceSize<T>(batchSize, mDecoderDomain.getVocabSizePadded());
}
else
{
mWorkspaceSize = getAirTopPWorkspaceSize<T>(batchSize, mDecoderDomain.getVocabSizePadded(), mIsDeterministic);
}
mRuntimeTopKDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<SizeType32>::value);
mRuntimeTopPDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<float>::value);
mInitialTopPDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<float>::value);
mTopPDecayDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<float>::value);
mTopPMinDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<float>::value);
mTopPResetIdsDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<TokenIdType>::value);
mSkipDecodeDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<bool>::value);
mSkipDecodeHost = mBufferManager->pinnedPool(ITensor::makeShape({batchSize}), TRTDataType<bool>::value);
auto skipDecodeHostRange = BufferRange<bool>(*mSkipDecodeHost);
std::fill(skipDecodeHostRange.begin(), skipDecodeHostRange.end(), true);
auto workspaceSize = std::max({mRuntimeTopKDevice->getSizeInBytes(), mRuntimeTopPDevice->getSizeInBytes(),
mInitialTopPDevice->getSizeInBytes(), mTopPDecayDevice->getSizeInBytes(), mTopPMinDevice->getSizeInBytes(),
mTopPResetIdsDevice->getSizeInBytes(), mSkipDecodeDevice->getSizeInBytes()});
mSetupWorkspaceDevice
= mBufferManager->gpu(ITensor::makeShape({static_cast<int64_t>(workspaceSize)}), TRTDataType<int8_t>::value);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::setup(SizeType32 const batchSize, SizeType32 const beamWidth, BufferConstPtr batchSlots,
std::shared_ptr<BaseSetupParams> const& baseSetupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
auto const defaultTopK = DefaultDecodingParams::getTopK();
auto runtimeTopK = setupParams->runtimeTopK.value_or(std::vector<SizeType32>(batchSize, defaultTopK));
auto runtimeTopP = setupParams->runtimeTopP.value_or(std::vector<float>{});
auto const runtimeTopKSize = runtimeTopK.size();
auto const runtimeTopPSize = runtimeTopP.size();
auto const defaultTopPDecay = DefaultDecodingParams::getTopPDecay();
auto decayVec = setupParams->topPDecay.value_or(std::vector<float>(batchSize, defaultTopPDecay));
auto const defaultTopPMin = DefaultDecodingParams::getTopPMin(); // prevent TopP becoming 0.0
auto topPMinVec = setupParams->topPMin.value_or(std::vector<float>(batchSize, defaultTopPMin));
auto const defaultTopPResetId = DefaultDecodingParams::getTopPResetId();
auto topPResetIdsVec = setupParams->topPResetIds.value_or(std::vector<TokenIdType>(batchSize, defaultTopPResetId));
auto batchSlotsPtr = bufferCastOrNull<SizeType32>(batchSlots);
auto skipDecodeHostPtr = bufferCastOrNull<bool>(mSkipDecodeHost);
if (runtimeTopPSize == 0)
{
for (SizeType32 bi = 0; bi < batchSize; ++bi)
{
auto bid = bi;
if (batchSlotsPtr)
{
bid = batchSlotsPtr[bi];
}
skipDecodeHostPtr[bid] = true;
}
auto const batchSize = mDecoderDomain.getBatchSize();
auto skipDecodeHostSlice = IBuffer::slice(mSkipDecodeHost, 0, batchSize);
mBufferManager->copy(*skipDecodeHostSlice, *mSkipDecodeDevice);
return;
}
for (auto& topP : runtimeTopP)
{
if (topP < 0.f || topP > 1.0f)
{
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
topP = std::clamp(topP, 0.f, 1.f);
}
}
for (auto& decay : decayVec)
{
if (decay <= 0.f || decay > 1.0f)
{
TLLM_LOG_WARNING(
"Decay (%f) is out of range ((0.0, 1.0f]). Change to default (%f).", decay, defaultTopPDecay);
decay = defaultTopPDecay;
}
}
for (auto& topPMin : topPMinVec)
{
if (topPMin <= 0.f || topPMin > 1.0f)
{
TLLM_LOG_WARNING(
"TopP min (%f) is out of range ([0.0, 1.0f]). Change to default (%f).", topPMin, defaultTopPMin);
topPMin = defaultTopPMin;
}
}
auto const topK = runtimeTopK.at(0);
auto const topP = runtimeTopP.at(0);
auto setupWorkspaceDevicePtr = reinterpret_cast<SizeType32*>(bufferCastOrNull<int8_t>(mSetupWorkspaceDevice));
auto setupWorkspaceDeviceAsFloatPtr = reinterpret_cast<float*>(setupWorkspaceDevicePtr);
auto runtimeTopKDevicePtr = bufferCastOrNull<SizeType32>(mRuntimeTopKDevice);
if (runtimeTopKSize > 1)
{
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(runtimeTopK.size()) == batchSize,
fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize));
mBufferManager->copy(runtimeTopK.data(), *mSetupWorkspaceDevice, runtime::MemoryType::kCPU);
invokeScatterDecodingParams(
setupWorkspaceDevicePtr, runtimeTopKDevicePtr, batchSlotsPtr, batchSize, getStream());
}
auto runtimeTopPDevicePtr = bufferCastOrNull<float>(mRuntimeTopPDevice);
if (runtimeTopPSize > 1)
{
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(runtimeTopP.size()) == batchSize,
fmtstr("runtimeTopP.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopP.size(), batchSize));
mBufferManager->copy(runtimeTopP.data(), *mSetupWorkspaceDevice, runtime::MemoryType::kCPU);
invokeScatterDecodingParams(
setupWorkspaceDeviceAsFloatPtr, runtimeTopPDevicePtr, batchSlotsPtr, batchSize, getStream());
}
auto fillBuffers = [this, batchSize, batchSlotsPtr](
std::string name, auto const& vector, auto deviceTmpBuffer, auto deviceBuffer)
{
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(vector.size()) == batchSize,
fmtstr("%s.size() (%lu) == batchSize (%d) is not satisfied!", name.c_str(), vector.size(), batchSize));
cudaAutoCpy(deviceTmpBuffer, vector.data(), batchSize, getStream());
invokeScatterDecodingParams(deviceTmpBuffer, deviceBuffer, batchSlotsPtr, batchSize, getStream());
};
auto topPDecayDevicePtr = bufferCastOrNull<float>(mTopPDecayDevice);
fillBuffers("topPDecay", decayVec, setupWorkspaceDeviceAsFloatPtr, topPDecayDevicePtr);
auto topPMinDevicePtr = bufferCastOrNull<float>(mTopPMinDevice);
fillBuffers("topPMin", topPMinVec, setupWorkspaceDeviceAsFloatPtr, topPMinDevicePtr);
auto topPRestIdsDevicePtr = bufferCastOrNull<SizeType32>(mTopPResetIdsDevice);
fillBuffers("topPResetIds", topPResetIdsVec, setupWorkspaceDevicePtr, topPRestIdsDevicePtr);
{
auto skipDecodeDevicePtr = bufferCastOrNull<bool>(mSkipDecodeDevice);
auto initialTopPDevicePtr = bufferCastOrNull<float>(mInitialTopPDevice);
dim3 block(std::min(static_cast<uint32_t>(batchSize), 256u));
dim3 grid(divUp(static_cast<uint32_t>(batchSize), block.x));
setTopPRuntimeArgs<<<grid, block, 0, getStream()>>>(batchSize, topK, runtimeTopKDevicePtr, runtimeTopKSize,
topP, runtimeTopPDevicePtr, runtimeTopPSize, skipDecodeDevicePtr, batchSlotsPtr, initialTopPDevicePtr);
sync_check_cuda_error();
}
auto const skipHostDecodeDeviceSlice = ITensor::slice(mSkipDecodeDevice, 0, mDecoderDomain.getBatchSize());
auto skipDecodeHostSlice = ITensor::slice(mSkipDecodeHost, 0, mDecoderDomain.getBatchSize());
mBufferManager->copy(*skipHostDecodeDeviceSlice, *skipDecodeHostSlice);
std::vector<float> runtimeTopPs(mDecoderDomain.getBatchSize());
auto const runtimeTopPDeviceSlice = ITensor::slice(mRuntimeTopPDevice, 0, mDecoderDomain.getBatchSize());
mBufferManager->copy(*runtimeTopPDeviceSlice, runtimeTopPs.data(), runtime::MemoryType::kCPU);
{
auto maxTopP = 0.f;
for (SizeType32 bi = 0; bi < batchSize; ++bi)
{
auto const bid = batchSlotsPtr ? batchSlotsPtr[bi] : bi;
maxTopP = std::max(maxTopP, runtimeTopPs[bid]);
}
mRuntimeMaxTopP = std::max(mRuntimeMaxTopP, maxTopP);
}
if (mIsAirTopP == true)
{
auto smCnt = mDeviceProp.multiProcessorCount;
if (smCnt <= 0)
{
int deviceId;
check_cuda_error(cudaGetDevice(&deviceId)); // Get the correct device id
cudaDeviceProp prop;
check_cuda_error(cudaGetDeviceProperties(&prop, deviceId));
smCnt = prop.multiProcessorCount;
}
mAirTopPBlockNum
= calcAirTopPBlockNum<T>(batchSize, (int) mDecoderDomain.getVocabSizePadded(), smCnt, mIsDeterministic);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::forwardAsync(
std::shared_ptr<BaseDecodingOutputs> const& outputs, std::shared_ptr<BaseDecodingInputs> const& baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto inputs = std::dynamic_pointer_cast<SamplingInputs>(baseInputs);
auto const batchSize = inputs->logits.value()->getDimension<0>();
auto batchSlotsHost
= inputs->batchSlots ? inputs->batchSlots.value() : getDefaultBatchSlots(batchSize, *mBufferManager);
auto skipDecodeHostPtr = bufferCastOrNull<bool>(mSkipDecodeHost);
auto const skip = allOfBatchSlots(bufferCastOrNull<SizeType32>(batchSlotsHost), skipDecodeHostPtr, batchSize, true);
if (skip)
{
return;
}
// Probabilities must be already computed instead of logits
auto probs = bufferCastOrNull<T>(inputs->logits);
auto endIds = bufferCastOrNull<TokenIdType>(inputs->endIds);
auto batchSlots = bufferCastOrNull<SizeType32>(inputs->batchSlots);
auto curandStatesDevice = inputs->curandStates;
auto samplingWorkspaceDevice = inputs->samplingWorkspace;
TLLM_CHECK_WITH_INFO(curandStatesDevice, "No curand states provided");
TLLM_CHECK_WITH_INFO(samplingWorkspaceDevice, "No sampling workspace provided");
auto finishedInput = (inputs->finished) ? reinterpret_cast<FinishedState const*>(
bufferCastOrNull<FinishedState::UnderlyingType>(inputs->finished.value()))
: nullptr;
auto finishedOutput = (outputs->finished)
? reinterpret_cast<FinishedState*>(bufferCastOrNull<FinishedState::UnderlyingType>(outputs->finished.value()))
: nullptr;
auto cumLogProbs = bufferCastOrNull<float>(outputs->cumLogProbs);
auto outputLogProbs = bufferCastOrNull<float>(outputs->outputLogProbsTiled);
auto sequenceLength = bufferCastOrNull<SizeType32>(outputs->sequenceLength);
TopPSamplingKernelParams<T> params;
params.probs = probs;
params.outputIds = bufferCastOrNull<TokenIdType*>(outputs->outputIdsPtr);
params.workspace = samplingWorkspaceDevice;
params.topPs = bufferCastOrNull<float>(mRuntimeTopPDevice);
params.sequenceLength = sequenceLength;
params.endIds = endIds;
params.batchSlots = batchSlots;
params.finishedInput = finishedInput;
params.finishedOutput = finishedOutput;
params.skipDecode = bufferCastOrNull<bool>(mSkipDecodeDevice);
params.cumLogProbs = cumLogProbs;
params.outputLogProbs = outputLogProbs;
params.curandState = curandStatesDevice;
params.batchSize = batchSize;
params.maxBatchSize = mDecoderDomain.getBatchSize();
params.vocabSizePadded = mDecoderDomain.getVocabSizePadded();
if (mIsAirTopP == false)
{
invokeBatchTopPSampling<T>(params, getStream());
sync_check_cuda_error();
}
else
{
params.blockNum = mAirTopPBlockNum;
params.isDeterministic = mIsDeterministic;
invokeBatchAirTopPSampling<T>(params, getStream());
sync_check_cuda_error();
}
sync_check_cuda_error();
auto runtimeTopPDevicePtr = bufferCastOrNull<float>(mRuntimeTopPDevice);
auto initialTopPDevicePtr = bufferCastOrNull<float>(mInitialTopPDevice);
auto topPDecayDevicePtr = bufferCastOrNull<float>(mTopPDecayDevice);
auto topPMinDevicePtr = bufferCastOrNull<float>(mTopPMinDevice);
auto topPResetIdsDevice = bufferCastOrNull<TokenIdType>(mTopPResetIdsDevice);
auto outputIdsPtr = bufferCastOrNull<TokenIdType const*>(outputs->outputIdsPtr);
invokeComputeToppDecay(runtimeTopPDevicePtr, initialTopPDevicePtr, outputIdsPtr, topPDecayDevicePtr,
topPMinDevicePtr, topPResetIdsDevice, sequenceLength, batchSlots, batchSize, getStream());
sync_check_cuda_error();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
size_t TopPSamplingLayer<T>::getWorkspaceSize() const noexcept
{
return mWorkspaceSize;
}
template class TopPSamplingLayer<float>;
template class TopPSamplingLayer<half>;
} // namespace tensorrt_llm::layers