TensorRT-LLMs/examples/phi/convert_checkpoint.py
Kaiyu Xie 9691e12bce
Update TensorRT-LLM (#1835)
* Update TensorRT-LLM

---------

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
2024-06-25 21:10:30 +08:00

100 lines
3.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from transformers import AutoConfig
import tensorrt_llm
from tensorrt_llm.models import Phi3ForCausalLM, PhiForCausalLM
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
args = parser.parse_args()
return args
if __name__ == '__main__':
print(tensorrt_llm.__version__)
args = parse_arguments()
assert args.pp_size == 1, "Pipeline parallelism is not supported."
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
model_config = AutoConfig.from_pretrained(args.model_dir,
trust_remote_code=True)
model_type = model_config.architectures[0]
supported_models = [
'PhiForCausalLM', 'Phi3ForCausalLM', 'Phi3VForCausalLM',
'Phi3SmallForCausalLM'
]
modelForCausalLM = None
if model_type not in supported_models:
assert False, "Invalid model type"
modelForCausalLM = PhiForCausalLM if model_type == 'PhiForCausalLM' else Phi3ForCausalLM
modelForCausalLM.convert_hf_checkpoint(args.model_dir,
dtype=args.dtype,
output_dir=args.output_dir,
args=args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')