TensorRT-LLMs/examples/apps/README.md
石晓伟 548b5b7310
Update TensorRT-LLM (#2532)
* blossom-ci.yml: run vulnerability scan on blossom

* open source efb18c1256f8c9c3d47b7d0c740b83e5d5ebe0ec

---------

Co-authored-by: niukuo <6831097+niukuo@users.noreply.github.com>
Co-authored-by: pei0033 <59505847+pei0033@users.noreply.github.com>
Co-authored-by: Kyungmin Lee <30465912+lkm2835@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 21:16:56 +08:00

96 lines
3.0 KiB
Markdown

# Apps examples with GenerationExecutor / LLM API
## OpenAI API
The `trtllm-serve` command launches an OpenAI compatible server which supports `v1/version`, `v1/completions` and `v1/chat/completions`. [openai_client.py](./openai_client.py) is a simple example using OpenAI client to query your model. To start the server, you can run
```
trtllm-serve <model>
```
Then you can query the APIs by running our example client or by `curl`.
### v1/completions
Query by `curl`:
```
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": <model_name>,
"prompt": "Where is New York?",
"max_tokens": 16,
"temperature": 0
}'
```
Query by our example:
```
python3 ./openai_client.py --prompt "Where is New York?" --api completions
```
### v1/chat/completions
Query by `curl`:
```
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": <model_name>,
"messages":[{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Where is New York?"}],
"max_tokens": 16,
"temperature": 0
}'
```
Query by our example:
```
python3 ./openai_client.py --prompt "Where is New York?" --api chat
```
## Python chat
[chat.py](./chat.py) provides a small examples to play around with your model. Before running, install additional requirements with ` pip install -r ./requirements.txt`. Then you can run it with
```
python3 ./chat.py --model <model_dir> --tokenizer <tokenizer_path> --tp_size <tp_size>
```
Please run `python3 ./chat.py --help` for more information on the arguments.
Note that, the `model_dir` could accept the following formats:
1. A path to a built TRT-LLM engine
2. A path to a local HuggingFace model
3. The name of a HuggingFace model such as "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
## FastAPI server
NOTE: This FastAPI-based server is only an example for demonstrating the usage
of TensorRT-LLM LLM API. It is not intended for production use.
For production, use the `trtllm-serve` command. The server exposes OpenAI compatible API endpoints.
### Install the additional requirements
```
pip install -r ./requirements.txt
```
### Start the server
Start the server with:
```
python3 ./fastapi_server.py <model_dir>&
```
Note that, the `model_dir` could accept same formats as in the chat example. If you are using an engine build with `trtllm-build`, remember to pass the tokenizer path:
```
python3 ./fastapi_server.py <model_dir> --tokenizer <tokenizer_dir>&
```
To get more information on all the arguments, please run `python3 ./fastapi_server.py --help`.
### Send requests
You can pass request arguments like "max_tokens", "top_p", "top_k" in your JSON dict:
```
curl http://localhost:8000/generate -d '{"prompt": "In this example,", "max_tokens": 8}'
```
You can also use the streaming interface with:
```
curl http://localhost:8000/generate -d '{"prompt": "In this example,", "max_tokens": 8, "streaming": true}'
```