TensorRT-LLMs/examples/granite/README.md
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

84 lines
3.6 KiB
Markdown

# Granite
This document shows how to build and run a [Granite 3.0](https://huggingface.co/collections/ibm-granite/granite-30-language-models-66fdb59bbb54785c3512114f) model in TensorRT-LLM.
The TensorRT-LLM Granite implementation is based on the LLaMA model, with Mixture of Experts (MoE) enabled. The implementation can be found in [`llama/model.py`](../../tensorrt_llm/models/llama/model.py). See the LLaMA example [`examples/llama`](../llama) for details.
- [Granite 3.0](#Granite)
- [Download model checkpoints](#download-model-checkpoints)
- [Convert weights from HF Transformers to TensorRT-LLM format](#Convert-weights-from-HF-Transformers-to-TensorRT-LLM-format)
- [Build TensorRT engine](#build-tensorrt-engine)
- [Run Engine](#run-engine)
## Download model checkpoints
First, download the HuggingFace BF16 checkpoints of Granite 3.0 model.
```bash
HF_MODEL="granite-3.0-8b-instruct" # or granite-3.0-3b-a800m-instruct
# clone the model we want to build
git clone https://huggingface.co/ibm-granite/${HF_MODEL} tmp/hf_checkpoints/${HF_MODEL}
```
## Convert weights from HF Transformers to TensorRT-LLM format
Set environment variables and necessary directory:
```bash
PREC_RAW="bfloat16"
TP=1
mkdir -p tmp/trt_engines
```
### BF16
Convert the weights using the `convert_checkpoint.py` script:
```bash
ENGINE="${HF_MODEL}_${PREC_RAW}_tp${TP}"
export TRTLLM_DISABLE_UNIFIED_CONVERTER=1 # The current checkpoint conversion code requires legacy path
python3 ../llama/convert_checkpoint.py --model_dir tmp/hf_checkpoints/${HF_MODEL} \
--output_dir tmp/tllm_checkpoints/${ENGINE} \
--dtype ${PREC_RAW} \
--tp_size ${TP} \
--use_embedding_sharing
```
### FP8 PTQ
Notes:
- Currently quantize.py does not support Expert Parallelism (EP) mode yet. User should use `../llama/convert_checkpoint.py` and specify `--moe_ep_size 1` instead, if needed.
- TensorRT-LLM uses static quantization methods, which is expected to be faster at runtime as compared to dynamic quantization methods. This comes at a cost of an offline calibration step during quantization. `batch_size` and `calib_size` can be adjusted to shorten the calibration time. Please refer to `../quantization/README.md` for explanation.
```bash
PREC_QUANT="fp8"
ENGINE="${HF_MODEL}_${PREC_QUANT}_tp${TP}"
python ../quantization/quantize.py --model_dir tmp/hf_checkpoints/${HF_MODEL} \
--dtype ${PREC_RAW} \
--qformat ${PREC_QUANT} \
--kv_cache_dtype ${PREC_QUANT} \
--output_dir tmp/tllm_checkpoints/${ENGINE} \
--batch_size 1 \
--calib_size 128 \
--tp_size ${TP}
```
## Build TensorRT engine
```bash
# Enable fp8 context fmha to get further acceleration by setting `--use_fp8_context_fmha enable`
# Use --workers to enable parallel build
trtllm-build --checkpoint_dir ./tmp/tllm_checkpoints/${ENGINE} \
--output_dir ./tmp/trt_engines/${ENGINE} \
--gpt_attention_plugin ${PREC_RAW} \
--gemm_plugin ${PREC_RAW} \
--workers ${TP}
```
## Run Engine
Test your engine with the [run.py](../run.py) script:
```bash
mpirun -n ${TP} --allow-run-as-root python ../run.py --engine_dir ./tmp/trt_engines/${ENGINE} --tokenizer_dir tmp/hf_checkpoints/${HF_MODEL} --max_output_len 20 --input_text "The future of AI is"
```
For more usage examples see [`examples/llama/README.md`](../llama/README.md)