Signed-off-by: William Zhang <133824995+2ez4bz@users.noreply.github.com> Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com> Co-authored-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>
5.7 KiB
Support Matrix
AutoDeploy streamlines model deployment with an automated workflow designed for efficiency and performance. The workflow begins with a PyTorch model, which is exported using torch.export to generate a standard Torch graph. This graph contains core PyTorch ATen operations alongside custom attention operations, determined by the attention backend specified in the configuration.
The exported graph then undergoes a series of automated transformations, including graph sharding, KV-cache insertion, and GEMM fusion, to optimize model performance. After these transformations, the graph is compiled using one of the supported compile backends (like torch-opt), followed by deploying it via the TRT-LLM runtime.
Support Models
Bring Your Own Model: AutoDeploy leverages torch.export and dynamic graph pattern matching, enabling seamless integration for a wide variety of models without relying on hard-coded architectures.
AutoDeploy supports Hugging Face models compatible with AutoModelForCausalLM and AutoModelForImageTextToText.
In addition, the following models have been officially validated using the default configuration: runtime=trtllm, compile_backend=torch-compile, and attn_backend=flashinfer
Click to expand supported models list
- Qwen/QwQ-32B
- Qwen/Qwen2.5-0.5B-Instruct
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-3B-Instruct
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen3-0.6B
- Qwen/Qwen3-235B-A22B
- Qwen/Qwen3-30B-A3B
- Qwen/Qwen3-4B
- Qwen/Qwen3-8B
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
- apple/OpenELM-1_1B-Instruct
- apple/OpenELM-270M-Instruct
- apple/OpenELM-3B-Instruct
- apple/OpenELM-450M-Instruct
- bigcode/starcoder2-15b-instruct-v0.1
- bigcode/starcoder2-7b
- deepseek-ai/DeepSeek-Prover-V1.5-SFT
- deepseek-ai/DeepSeek-Prover-V2-7B
- deepseek-ai/DeepSeek-R1-Distill-Llama-70B
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
- google/codegemma-7b-it
- google/gemma-1.1-7b-it
- google/gemma-2-27b-it
- google/gemma-2-2b-it
- google/gemma-2-9b-it
- google/gemma-2b
- google/gemma-3-1b-it
- ibm-granite/granite-3.1-2b-instruct
- ibm-granite/granite-3.1-8b-instruct
- ibm-granite/granite-3.3-2b-instruct
- ibm-granite/granite-3.3-8b-instruct
- ibm-granite/granite-guardian-3.1-2b
- ibm-granite/granite-guardian-3.2-5b
- meta-llama/CodeLlama-34b-Instruct-hf
- meta-llama/CodeLlama-7b-Instruct-hf
- meta-llama/CodeLlama-7b-Python-hf
- meta-llama/Llama-2-13b-chat-hf
- meta-llama/Llama-2-7b-chat-hf
- meta-llama/Llama-3.1-8B-Instruct
- meta-llama/Llama-3.2-1B-Instruct
- meta-llama/Llama-3.2-3B-Instruct
- meta-llama/Llama-3.3-70B-Instruct
- meta-llama/Llama-4-Maverick-17B-128E-Instruct
- meta-llama/Llama-4-Scout-17B-16E-Instruct
- microsoft/Phi-3-medium-128k-instruct
- microsoft/Phi-3-medium-4k-instruct
- microsoft/Phi-4-mini-instruct
- microsoft/Phi-4-mini-reasoning
- microsoft/Phi-4-reasoning
- microsoft/Phi-4-reasoning-plus
- microsoft/phi-4
- mistralai/Codestral-22B-v0.1
- mistralai/Mistral-7B-Instruct-v0.2
- mistralai/Mistral-7B-Instruct-v0.3
- mistralai/Mixtral-8x22B-Instruct-v0.1
- nvidia/Llama-3.1-405B-Instruct-FP8
- nvidia/Llama-3.1-70B-Instruct-FP8
- nvidia/Llama-3.1-8B-Instruct-FP8
- nvidia/Llama-3.1-Minitron-4B-Depth-Base
- nvidia/Llama-3.1-Minitron-4B-Width-Base
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
- nvidia/Llama-3.1-Nemotron-Nano-8B-v1
- nvidia/Llama-3_1-Nemotron-51B-Instruct
- nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
- nvidia/Llama-3_1-Nemotron-Ultra-253B-v1-FP8
- nvidia/Llama-3_3-Nemotron-Super-49B-v1
- nvidia/Mistral-NeMo-Minitron-8B-Base
- nvidia/Nemotron-Flash-3B-Instruct
- nvidia/NVIDIA-Nemotron-3-Nano-30B-A3B-BF16
- nvidia/NVIDIA-Nemotron-3-Nano-30B-A3B-FP8
- perplexity-ai/r1-1776-distill-llama-70b
Runtime Integrations
AutoDeploy runs natively with the complete TRT-LLM stack via the LLM API. In addition, we provide a light-weight wrapper of the LLM API for onboarding and debugging new models:
"runtime" |
Description |
|---|---|
trtllm |
A robust, production-grade runtime optimized for high-performance inference. |
demollm |
A lightweight runtime wrapper designed for development and testing, featuring a naive scheduler and KV-cache manager for simplified debugging and testing. |
Compile Backends
AutoDeploy supports multiple backends for compiling the exported Torch graph:
"compile_backend" |
Description |
|---|---|
torch-simple |
Exports the graph without additional optimizations. |
torch-compile |
Applies torch.compile to the graph after all AutoDeploy transformations have been completed. |
torch-cudagraph |
Performs CUDA graph capture (without torch.compile). |
torch-opt |
Uses torch.compile along with CUDA Graph capture to enhance inference performance. |
Attention backends
Optimize attention operations with different attention kernel implementations:
"attn_backend" |
Description |
|---|---|
torch |
Custom fused multi-head attention (MHA) with KV Cache reference implementation in pure PyTorch (slow!) |
triton |
Custom fused multi-head attention (MHA) with KV Cache kernels for efficient attention processing. |
flashinfer |
Uses optimized attention kernels with KV Cache from the flashinfer library. |
Precision Support
AutoDeploy supports models with various precision formats, including quantized checkpoints generated by Model-Optimizer.
Supported precision types include:
- BF16 / FP16 / FP32
- FP8
- NVFP4