mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
126 lines
5.5 KiB
C++
126 lines
5.5 KiB
C++
/*
|
|
* Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cstdint>
|
|
#include <cuda.h>
|
|
#include <vector>
|
|
|
|
#include "trtllmGen_bmm_export/trtllm/gen/DtypeDecl.h"
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
// Keep this in sync with the ActType in
|
|
// cpp/tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/trtllmGen_bmm_export/GemmGatedActOptions.h
|
|
enum class ActType
|
|
{
|
|
// For ActType == SwiGlu, ideally we would like to have something like
|
|
// gatedAct = scaleC * (x0 * scaleAb + beta) * ((x1 * scaleGate) * sigmoid(alpha * x1 *
|
|
// scaleGate)).
|
|
// But for now, we use the simplified version
|
|
// gatedAct = scaleC' * (x0 + beta') * ((x1 * scaleGate) * sigmoid(alpha * x1 * scaleGate)),
|
|
// where x0 and x1 are the raw numbers from Gemm, while scaleC and scaleGate are input scales,
|
|
// beta' = beta / scaleAb, scaleC' = scaleC * scaleAb.
|
|
//
|
|
// GatedSilu is a special case of SwiGlu where the alpha is 1.0 and the beta is 0.0.
|
|
SwiGlu
|
|
};
|
|
|
|
struct TrtllmGenBatchedGemmRunnerOptions
|
|
{
|
|
batchedGemm::trtllm::gen::Dtype dtypeA;
|
|
batchedGemm::trtllm::gen::Dtype dtypeB;
|
|
batchedGemm::trtllm::gen::Dtype dtypeC;
|
|
ActType actType{ActType::SwiGlu};
|
|
bool deepSeekFp8{false};
|
|
bool fusedAct{false};
|
|
bool routeAct{false};
|
|
bool staticBatch{false};
|
|
bool transposeMmaOutput{false};
|
|
int32_t tileSize{8};
|
|
int32_t epilogueTileM{128};
|
|
};
|
|
|
|
class TrtllmGenBatchedGemmRunner
|
|
{
|
|
public:
|
|
explicit TrtllmGenBatchedGemmRunner(TrtllmGenBatchedGemmRunnerOptions const& options);
|
|
|
|
[[nodiscard]] size_t getWorkspaceSizeInBytes(int32_t m, int32_t n, int32_t k,
|
|
std::vector<int32_t> const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim,
|
|
int32_t configIndex) const;
|
|
|
|
// Generic GEMM interface
|
|
void run(int32_t m, int32_t n, int32_t k, std::vector<int32_t> const& batchedTokens, int32_t numTokens,
|
|
int32_t numBatches, int32_t maxNumCtasInBatchDim, void const* a, void const* sfA, void const* b,
|
|
void const* sfB, void const* perTokensSfA, void const* perTokensSfB, float const* scaleC,
|
|
float const* scaleGateC, float const* bias, float const* swiGluAlpha, float const* swiGluBeta,
|
|
float const* clampLimit, void* c, void* outSfC, int32_t const* routeMap, int32_t const* totalNumPaddedTokens,
|
|
int32_t const* ctaIdxXyToBatchIdx, int32_t const* ctaIdxXyToMnLimit, int32_t const* numNonExitingCtas,
|
|
void* workspace, CUstream stream, int device, int32_t configIndex);
|
|
|
|
// Block-scaling GEMM
|
|
void run(int32_t m, int32_t n, int32_t k, std::vector<int32_t> const& batchedTokens, void const* a, void const* sfA,
|
|
void const* b, void const* sfB, void* c, void* outSfC, void* workspace, CUstream stream, int device,
|
|
int32_t configIndex);
|
|
|
|
// Block-scaling GEMM with SwiGLU activation
|
|
void run(int32_t m, int32_t n, int32_t k, std::vector<int32_t> const& batchedTokens, void const* a, void const* sfA,
|
|
void const* b, void const* sfB, float const* bias, float const* swiGluAlpha, float const* swiGluBeta,
|
|
float const* clampLimit, void* c, void* outSfC, void* workspace, CUstream stream, int device,
|
|
int32_t configIndex);
|
|
|
|
// FP8 per-tensor scaling GEMM
|
|
void run(int32_t m, int32_t n, int32_t k, std::vector<int32_t> const& batchedTokens, void const* a, void const* b,
|
|
float const* scaleC, float const* scaleGateC, void* c, void* workspace, CUstream stream, int device,
|
|
int32_t configIndex);
|
|
|
|
// Get the list of configs that passed the validation based on the constructor options
|
|
[[nodiscard]] std::vector<int64_t> getPassingConfigIndices() const
|
|
{
|
|
return mPassingConfigIndices;
|
|
}
|
|
|
|
// Get the list of config indices that are valid for the given problem shape
|
|
[[nodiscard]] std::vector<int64_t> getValidConfigIndices(int32_t m, int32_t n, int32_t k,
|
|
std::vector<int32_t> const& batchedTokens, int32_t numTokens, int32_t numBatches,
|
|
int32_t maxNumCtasInBatchDim) const;
|
|
|
|
// Get a default config index that is valid for the given problem shape
|
|
// This will be used as the fallback config if using auto-tuning
|
|
[[nodiscard]] int64_t getDefaultValidConfigIndex(int32_t m, int32_t n, int32_t k,
|
|
std::vector<int32_t> const& batchedTokens, int32_t numTokens, int32_t numBatches,
|
|
int32_t maxNumCtasInBatchDim) const;
|
|
|
|
[[nodiscard]] bool isValidConfigIndex(int32_t configIndex, int32_t m, int32_t n, int32_t k,
|
|
std::vector<int32_t> const& batchedTokens, int32_t numTokens, int32_t numBatches,
|
|
int32_t maxNumCtasInBatchDim) const;
|
|
|
|
private:
|
|
void selectGemmConfig(int32_t m, int32_t n, int32_t k, std::vector<int32_t> const& batchedTokens, int32_t numTokens,
|
|
int32_t numBatches, int32_t maxNumCtasInBatchDim);
|
|
|
|
private:
|
|
TrtllmGenBatchedGemmRunnerOptions mOptions;
|
|
std::vector<int64_t> mPassingConfigIndices;
|
|
};
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|