TensorRT-LLMs/examples/longbench/README.md
Fanrong Li 0d20a8fd61
[TRTLLM-8536][feat] Add the sparse attention framework and one use case--RocketKV support (#8086)
Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>
Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>
Co-authored-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>
2025-10-14 08:23:16 -07:00

171 lines
4.9 KiB
Markdown

# LongBench Evaluation with TensorRT-LLM and Sparse Attention
This directory contains evaluation scripts for both LongBench v1 and LongBench v2 datasets using TensorRT-LLM backend.
## Environment Setup
### 1. Clone LongBench Repository
First, clone the LongBench repository which contains the datasets and evaluation utilities:
```bash
git clone https://github.com/THUDM/LongBench.git
```
### 2. Install Requirements
Install the required dependencies:
```bash
pip install -r requirements.txt
```
### 3. Directory Structure
After cloning, your directory structure should look like:
```text
sparse_attention/
├── eval_longbench_v1.py # LongBench v1 evaluation script
├── eval_longbench_v2.py # LongBench v2 evaluation script
├── README.md # This file
└── LongBench/ # Cloned LongBench repository
├── LongBench/ # LongBench v1 data and configs
│ ├── config/
│ └── ...
├── config/ # LongBench v2 configs
├── ...
└── requirements.txt
```
## Scripts Overview
### 1. eval_longbench_v1.py
This script evaluates models on the **LongBench v1** dataset, which includes multiple specific tasks like narrativeqa, qasper, multifieldqa, etc. Key features:
- **Dataset**: LongBench v1 with task-specific evaluation
- **Tasks**: Support for 20+ different long-context tasks
- **Prompts**: Task-specific prompts from LongBench v1 configuration
- **Metrics**: Task-specific metrics (F1, ROUGE, classification scores, etc.)
- **Output**: Task-level results with comprehensive summary statistics
### 2. eval_longbench_v2.py
This script evaluates models on the **LongBench v2** dataset, which is a standardized multiple-choice format. Key features:
- **Dataset**: LongBench v2 with unified multiple-choice format
- **Format**: All questions are A/B/C/D multiple choice
- **Context Length**: 8K to 2M words (majority under 128K)
- **Difficulty**: Easy/Hard categorization
- **Length**: Short/Medium/Long categorization
- **Domains**: Various domains (single-doc QA, multi-doc QA, code, etc.)
- **CoT Support**: Chain-of-Thought reasoning support
- **Metrics**: Accuracy with breakdowns by difficulty, length, and domain
## Usage Examples
### LongBench v1 Evaluation
#### Basic Usage (Standard Attention)
```bash
python eval_longbench_v1.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--output_dir results/v1_vanilla \
--attention_backend VANILLA \
--backend pytorch
```
#### Specific tasks With Sparse Attention (RocketKV)
```bash
python eval_longbench_v1.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--dataset narrativeqa qasper \
--output_dir results/v1_rocket \
--attention_backend VANILLA \
--backend pytorch \
--rocket_sparse
```
### LongBench v2 Evaluation
#### Basic Usage (Standard Attention)
```bash
python eval_longbench_v2.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--output_dir results/v2_vanilla
```
#### With Chain-of-Thought Reasoning
```bash
python eval_longbench_v2.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--output_dir results/v2_cot \
--cot
```
#### Filter by Difficulty/Length/Domain
```bash
# Easy questions only
python eval_longbench_v2.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--output_dir results/v2_easy \
--difficulty easy
# Long context only
python eval_longbench_v2.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--output_dir results/v2_long \
--length long
# Specific domain
python eval_longbench_v2.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--output_dir results/v2_code \
--domain "Code"
```
#### Limited Sample Evaluation (for testing)
```bash
python eval_longbench_v2.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--output_dir results/v2_test \
--num_samples 10
```
## Output Structure
### LongBench v1 Output
```text
results/v1_experiment/
├── config.json # Experiment configuration
├── overall_summary.json # Overall experiment summary
├── narrativeqa/
│ ├── narrativeqa_results.jsonl # Detailed results
│ ├── narrativeqa_summary.json # Task summary
│ └── pred/
│ └── narrativeqa.jsonl # Predictions in LongBench format
├── qasper/
│ └── ...
└── ...
```
### LongBench v2 Output
```text
results/v2_experiment/
├── config.json # Experiment configuration
├── summary.json # Evaluation summary with metrics
├── longbench_v2_results.jsonl # Detailed results
└── predictions.jsonl # Predictions in LongBench v2 format
```