mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-31 16:21:07 +08:00
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
315 lines
13 KiB
Markdown
315 lines
13 KiB
Markdown
# InternLM
|
|
|
|
This document shows how to build and run InternLM 7B / 20B models in TensorRT LLM on both single GPU, single node multi-GPU and multi-node multi-GPU.
|
|
|
|
- [InternLM](#internlm)
|
|
- [Overview](#overview)
|
|
- [Support Matrix](#support-matrix)
|
|
- [Usage](#usage)
|
|
- [Build TensorRT engine(s)](#build-tensorrt-engines)
|
|
- [INT8 weight only + INT8 KV cache](#int8-weight-only--int8-kv-cache)
|
|
- [SmoothQuant](#smoothquant)
|
|
- [Run](#run)
|
|
- [Summarization using the InternLM model](#summarization-using-the-internlm-model)
|
|
|
|
## Overview
|
|
|
|
The TensorRT LLM InternLM implementation is based on the LLaMA model. The implementation can
|
|
be found in [tensorrt_llm/models/llama/model.py](../../tensorrt_llm/models/llama/model.py).
|
|
The TensorRT LLM InternLM example code lies in [`examples/models/contrib/internlm`](./):
|
|
|
|
* [`convert_checkpoint.py`](../../../llama/convert_checkpoint.py) converts the Huggingface Model of InternLM into TensorRT LLM checkpoint.
|
|
* [`convert_checkpoint.py`] to to convert a checkpoint from the [HuggingFace (HF) Transformers](https://github.com/huggingface/transformers) format to the TensorRT LLM format
|
|
|
|
In addition, there are two shared files in the parent folder [`examples`](../../../) for inference and evaluation:
|
|
|
|
* [`../../../run.py`](../../../run.py) to run the inference on an input text;
|
|
* [`../../../summarize.py`](../../../summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/abisee/cnn_dailymail) dataset.
|
|
|
|
## Support Matrix
|
|
* FP16 / BF16
|
|
* INT8 & INT4 Weight-Only
|
|
* Smooth Quant
|
|
* INT8 KV Cache
|
|
* Tensor Parallel & Pipeline Parallel
|
|
|
|
## Usage
|
|
|
|
The TensorRT LLM InternLM example code locates at [examples/models/contrib/internlm](./). It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference.
|
|
|
|
### Build TensorRT engine(s)
|
|
|
|
Please install required packages first:
|
|
|
|
```bash
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
TensorRT LLM InternLM builds TensorRT engine(s) from HF checkpoint. If no checkpoint directory is specified, TensorRT LLM will build engine(s) with dummy weights.
|
|
|
|
InternLM has released several checkpoints of different size or capabilities under https://huggingface.co/internlm. Users can pick any one repository and follow instructions to prepare the checkpoint.
|
|
|
|
Below examples use [internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b) and [internlm-chat-20b](https://huggingface.co/internlm/internlm-chat-20b) and assume these repositories are cloned or linked under this directory, for example `./internlm-chat-7b/`.
|
|
|
|
Normally `trtllm-build` only requires single GPU, but if you've already got all the GPUs needed for inference, you could enable parallel building to make the engine building process faster by adding `--workers` argument. Please note that currently `--workers` feature only supports single node.
|
|
|
|
Here're some examples:
|
|
|
|
```bash
|
|
# Build a single-GPU float16 engine from HF weights.
|
|
# gpt_attention_plugin is necessary in InternLM.
|
|
# Try use_gemm_plugin to prevent accuracy issue.
|
|
cd examples/models/core/llama
|
|
|
|
# Convert the InternLM 7B model using a single GPU and FP16.
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-7b/ \
|
|
--dtype float16 \
|
|
--output_dir ./internlm-chat-7b/trt_engines/fp16/1-gpu/
|
|
# Note: setting `--dtype bfloat16` to use bfloat16 precision.
|
|
|
|
# BUild the InternLM 7B model using a single GPU
|
|
trtllm-build --checkpoint_dir ./internlm-chat-7b/trt_engines/fp16/1-gpu/ \
|
|
--output_dir ./engine_outputs \
|
|
--gemm_plugin float16
|
|
|
|
# Convert the InternLM 7B model using a single GPU and apply INT8 weight-only quantization..
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-7b/ \
|
|
--dtype float16 \
|
|
--output_dir ./internlm-chat-7b/trt_engines/int8/1-gpu/ \
|
|
--use_weight_only \
|
|
--weight_only_precision int8
|
|
|
|
trtllm-build --checkpoint_dir ./internlm-chat-7b/trt_engines/int8/1-gpu/ \
|
|
--output_dir ./engine_outputs \
|
|
--gemm_plugin float16
|
|
|
|
# Note: setting `--weight_only_precision int4` to use INT4 weight-only quantization
|
|
|
|
# Build InternLM 7B using 2-way tensor parallelism.
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-7b/ \
|
|
--dtype float16 \
|
|
--output_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/ \
|
|
--tp_size 2
|
|
|
|
trtllm-build --checkpoint_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/ \
|
|
--output_dir ./engine_outputs \
|
|
--gemm_plugin float16
|
|
|
|
# Build InternLM 20B using 2-way tensor parallelism.
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-20b/ \
|
|
--dtype bfloat16 \
|
|
--output_dir ./internlm-chat-20b/trt_engines/bf16/2-gpu/ \
|
|
--tp_size 2 --workers 2
|
|
|
|
trtllm-build --checkpoint_dir ./internlm-chat-7b/trt_engines/bf16/2-gpu/ \
|
|
--output_dir ./engine_outputs \
|
|
--gpt_attention_plugin bfloat16 \
|
|
--gemm_plugin bfloat16
|
|
```
|
|
|
|
#### INT8 weight only + INT8 KV cache
|
|
|
|
For INT8 KV cache, [`convert_checkpoint.py`](./convert_checkpoint.py) features a
|
|
`--int8_kv_cache` option. Setting `--int8_kv_cache` will calibrate the model,
|
|
and then export the scaling factors needed for INT8 KV cache inference.
|
|
|
|
|
|
Example:
|
|
|
|
```bash
|
|
cd examples/models/core/llama
|
|
|
|
# For 7B models
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-7b \
|
|
--output_dir ./internlm-chat-7b/smooth_internlm/int8_kv_cache/ \
|
|
--dtype float16 \
|
|
--use_weight_only \
|
|
--weight_only_precision int8 \
|
|
--int8_kv_cache
|
|
|
|
# Build 7B model with both INT8 weight-only and INT8 KV cache enabled
|
|
trtllm-build --checkpoint_dir ./internlm-chat-7b/smooth_internlm/int8_kv_cache/ \
|
|
--output_dir ./engine_outputs \
|
|
--gemm_plugin float16 \
|
|
```
|
|
|
|
|
|
```bash
|
|
cd examples/models/core/llama
|
|
|
|
# For 20B models
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-20b \
|
|
--output_dir ./internlm-chat-20b/smooth_internlm/int8_kv_cache/ \
|
|
--dtype float16 \
|
|
--use_weight_only \
|
|
--weight_only_precision int8 \
|
|
--int8_kv_cache
|
|
|
|
# Build 20B model with both INT8 weight-only and INT8 KV cache enabled
|
|
trtllm-build --checkpoint_dir ./internlm-chat-20b/smooth_internlm/int8_kv_cache/ \
|
|
--output_dir ./engine_outputs \
|
|
--gemm_plugin float16 \
|
|
```
|
|
|
|
|
|
Test with `../../../run.py` or `../../../summarize.py`:
|
|
|
|
```bash
|
|
python ../../../run.py --max_output_len=120 \
|
|
--input_text 'Tell me about yourself.' \
|
|
--tokenizer_dir ./internlm-chat-7b/ \
|
|
--engine_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu
|
|
|
|
python ../../../run.py --max_output_len=120 \
|
|
--input_text 'Tell me about yourself.' \
|
|
--tokenizer_dir ./internlm-chat-20b/ \
|
|
--engine_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu
|
|
|
|
python ../../../summarize.py --test_trt_llm --test_hf \
|
|
--hf_model_dir ./internlm-chat-7b \
|
|
--data_type fp16 \
|
|
--engine_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu
|
|
|
|
python ../../../summarize.py --test_trt_llm --test_hf \
|
|
--hf_model_dir ./internlm-chat-20b \
|
|
--data_type fp16 \
|
|
--engine_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu
|
|
```
|
|
|
|
#### SmoothQuant
|
|
|
|
Unlike the FP16 build where the HF weights are processed and loaded into the TensorRT LLM directly, the SmoothQuant needs to load INT8 weights which should be pre-processed before building an engine.
|
|
|
|
Example:
|
|
```bash
|
|
cd examples/models/core/llama
|
|
|
|
# For 7B models
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-7b --output_dir ./internlm-chat-7b/smooth_internlm/sq0.5/ --dtype float16 --smoothquant 0.5
|
|
# Build the engine
|
|
trtllm-build --checkpoint_dir ./internlm-chat-7b/smooth_internlm/sq0.5/ \
|
|
--output_dir ./engine_outputs \
|
|
--gemm_plugin float16
|
|
|
|
# For 20B models
|
|
cd examples/models/core/llama
|
|
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-20b --output_dir ./internlm-chat-20b/smooth_internlm/sq0.5/ --dtype float16 --smoothquant 0.5
|
|
trtllm-build --checkpoint_dir ./internlm-chat-20b/smooth_internlm/sq0.5/ \
|
|
--output_dir ./engine_outputs \
|
|
--gemm_plugin float16
|
|
```
|
|
|
|
[`convert_checkpoint.py`](./convert_checkpoint.py) add new options for the support of INT8 inference of SmoothQuant models.
|
|
|
|
`--smoothquant` is the starting point of INT8 inference. By default, it
|
|
will run the model in the _per-tensor_ mode.
|
|
|
|
Then, you can add any combination of `--per-token` and `--per-channel` to get the corresponding behaviors.
|
|
|
|
Examples of build invocations:
|
|
|
|
```bash
|
|
# Build model for SmoothQuant in the _per_token_ + _per_channel_ mode
|
|
cd examples/models/core/llama
|
|
|
|
# 7B model
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-7b --output_dir ./internlm-chat-7b/smooth_internlm/sq0.5/ --dtype float16 --smoothquant 0.5 --per_channel --per_token
|
|
|
|
# 20B model
|
|
python convert_checkpoint.py --model_dir ./internlm-chat-20b --output_dir ./internlm-chat-20b/smooth_internlm/sq0.5/ --dtype float16 --smoothquant 0.5 --per_channel --per_token
|
|
```
|
|
|
|
|
|
Test with `../../../run.py` or `../../../summarize.py`:
|
|
|
|
```bash
|
|
python ../../../run.py --max_output_len=120 \
|
|
--input_text 'Tell me about yourself.' \
|
|
--tokenizer_dir ./internlm-chat-7b/ \
|
|
--engine_dir ./internlm-chat-7b/smooth_internlm/sq0.5/
|
|
|
|
python ../../../run.py --max_output_len=120 \
|
|
--input_text 'Tell me about yourself.' \
|
|
--tokenizer_dir ./internlm-chat-20b/ \
|
|
--engine_dir ./internlm-chat-20b/smooth_internlm/sq0.5/
|
|
|
|
python ../../../summarize.py --test_trt_llm --test_hf \
|
|
--hf_model_dir ./internlm-chat-7b \
|
|
--data_type fp16 \
|
|
--engine_dir ./internlm-chat-7b/smooth_internlm/sq0.5/
|
|
|
|
python ../../../summarize.py --test_trt_llm --test_hf \
|
|
--hf_model_dir ./internlm-chat-20b \
|
|
--data_type fp16 \
|
|
--engine_dir ./internlm-chat-20b/smooth_internlm/sq0.5/
|
|
```
|
|
|
|
### Run
|
|
|
|
To run a TensorRT LLM InternLM model using the engines generated by `trtllm-build`
|
|
|
|
```bash
|
|
# InternLM 7B with fp16
|
|
python ../../../run.py --max_output_len=120 \
|
|
--input_text 'Tell me about yourself.' \
|
|
--tokenizer_dir ./internlm-chat-7b/ \
|
|
--engine_dir=./internlm-chat-7b/trt_engines/fp16/1-gpu/
|
|
|
|
# InternLM 7B with bf16
|
|
python ../../../run.py --max_output_len=120 \
|
|
--input_text 'Tell me about yourself.' \
|
|
--tokenizer_dir ./internlm-chat-7b/ \
|
|
--engine_dir=./internlm-chat-7b/trt_engines/bf16/1-gpu/
|
|
|
|
# InternLM 7B with int8 weight only quantization
|
|
python ../../../run.py --max_output_len=120 \
|
|
--input_text 'Tell me about yourself.' \
|
|
--tokenizer_dir ./internlm-chat-7b/ \
|
|
--engine_dir=./internlm-chat-7b/trt_engines/weight_only/1-gpu/
|
|
|
|
# InternLM 7B with fp16 and tensor parallelism
|
|
mpirun -n 2 --allow-run-as-root \
|
|
python ../../../run.py --max_output_len=120 \
|
|
--input_text 'Tell me about yourself.' \
|
|
--tokenizer_dir ./internlm-chat-7b/ \
|
|
--engine_dir=./internlm-chat-7b/trt_engines/fp16/2-gpu/
|
|
|
|
# InternLM 20B with fp16 and tensor parallelism and pipeline parallelism
|
|
mpirun -n 4 --allow-run-as-root \
|
|
python ../../../run.py --max_output_len=120 \
|
|
--input_text 'Tell me about yourself.' \
|
|
--tokenizer_dir ./internlm-chat-7b/ \
|
|
--engine_dir=./internlm-chat-7b/trt_engines/bf16/4-gpu/
|
|
```
|
|
|
|
### Summarization using the InternLM model
|
|
|
|
```bash
|
|
# Run summarization using the InternLM 7B model in FP16.
|
|
python ../../../summarize.py --test_trt_llm --test_hf \
|
|
--hf_model_dir ./internlm-chat-7b/ \
|
|
--data_type fp16 \
|
|
--engine_dir ./engine_outputs
|
|
|
|
# Run summarization using the InternLM 7B model quantized to INT8.
|
|
python ../../../summarize.py --test_trt_llm --test_hf \
|
|
--hf_model_dir ./internlm-chat-7b/ \
|
|
--data_type fp16 \
|
|
--engine_dir ./engine_outputs
|
|
|
|
# Run summarization using the InternLM 7B model in FP16 using two GPUs.
|
|
mpirun -n 2 --allow-run-as-root \
|
|
python ../../../summarize.py --test_trt_llm --test_hf \
|
|
--hf_model_dir ./internlm-chat-7b/ \
|
|
--data_type fp16 \
|
|
--engine_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/
|
|
|
|
# Run summarization using the InternLM 20B model in BF16 using 4 GPUs.
|
|
mpirun -n 4 --allow-run-as-root \
|
|
python ../../../summarize.py --test_trt_llm --test_hf \
|
|
--hf_model_dir ./internlm-chat-20b/ \
|
|
--data_type bf16 \
|
|
--engine_dir ./internlm-chat-20b/trt_engines/bf16/4-gpu/
|
|
```
|