TensorRT-LLMs/tests/functional/test_cumsum.py
2024-07-17 20:45:02 +08:00

169 lines
5.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from itertools import product
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session, unittest_name_func
class TestCumsum(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
('int32', (256, ), 0),
('int32', (256, ), -1),
('float32', (3, 16), 0),
('float32', (3, 16), 1),
('float32', (3, 16), -2),
('float16', (5, 6, 8), 1),
('float16', (5, 6, 8), 2),
('float16', (5, 6, 8), -3),
('float32', (1, 512), -1),
('float16', (3, 5, 5, 6), -1),
('int32', (1, 33), -1),
('int32', (1, 65), -1),
('float32', (1, 50000), -1),
('float32', (1, 2, 50000), -1),
('float32', (3, 5, 5, 50000), -1),
],
name_func=unittest_name_func)
def test_cumsum(self, dtype, x_shape, dim):
torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype)
if 'float' in dtype:
x_data = torch.rand(x_shape, dtype=torch_dtype, device="cuda")
else:
x_data = torch.randint(-100,
100,
x_shape,
dtype=torch_dtype,
device="cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.cumsum(x, dim=dim)
output.mark_output('output', dtype)
# trt run
session = create_session(
builder,
network,
precision='float32' if 'int32' in dtype else dtype)
inputs = {
'x': x_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.cumsum(x_data, dim=dim).to(torch_dtype)
# compare diff
tols = {
"float32": {
"rtol": 1e-05,
"atol": 1e-05
},
"float16": {
"rtol": 1e-02,
"atol": 1e-02
},
"int32": {
"rtol": 0,
"atol": 0
},
}
torch.testing.assert_close(outputs['output'], ref, **tols[dtype])
@parameterized.expand(
list(
product(['float32', 'float16', 'int32'],
[(256, ), (3, 16), (5, 6, 8)], [True, False])) +
list(product(['float32'], [(3, 5, 5, 50000)],
[True])), # False seems to be running into a TRT bug
name_func=unittest_name_func)
def test_cumsum_dynamic_last_dim(self, dtype, x_shape, prefer_plugin=True):
dim = -1
torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype)
if 'float' in dtype:
x_data = torch.rand(x_shape, dtype=torch_dtype, device="cuda")
else:
x_data = torch.randint(-100,
100,
x_shape,
dtype=torch_dtype,
device="cuda")
shape_except_last_dim = list(x_data.shape[:-1])
last_dim_size = x_data.shape[-1]
assert last_dim_size >= 1
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(
name='x',
shape=shape_except_last_dim + [-1], # last dim dynamic
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.cumsum(x,
dim=dim,
prefer_plugin=prefer_plugin)
output.mark_output('output', dtype)
# needs profile for dynamic shape
profile = builder.trt_builder.create_optimization_profile()
profile.set_shape('x', shape_except_last_dim + [1],
shape_except_last_dim + [last_dim_size],
shape_except_last_dim + [last_dim_size * 2])
session = create_session(
builder,
network,
precision='float32' if 'int32' in dtype else dtype,
optimization_profiles=[profile])
inputs = {'x': x_data}
outputs = run_session(session, inputs)
ref = torch.cumsum(x_data, dim=dim).to(torch_dtype)
# compare diff
tols = {
"float32": {
"rtol": 1e-05,
"atol": 1e-05
},
"float16": {
"rtol": 1e-02,
"atol": 1e-02
},
"int32": {
"rtol": 0,
"atol": 0
},
}
torch.testing.assert_close(outputs['output'], ref, **tols[dtype])