mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
169 lines
5.8 KiB
Python
169 lines
5.8 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import create_session, run_session, unittest_name_func
|
|
|
|
|
|
class TestCumsum(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@parameterized.expand([
|
|
('int32', (256, ), 0),
|
|
('int32', (256, ), -1),
|
|
('float32', (3, 16), 0),
|
|
('float32', (3, 16), 1),
|
|
('float32', (3, 16), -2),
|
|
('float16', (5, 6, 8), 1),
|
|
('float16', (5, 6, 8), 2),
|
|
('float16', (5, 6, 8), -3),
|
|
('float32', (1, 512), -1),
|
|
('float16', (3, 5, 5, 6), -1),
|
|
('int32', (1, 33), -1),
|
|
('int32', (1, 65), -1),
|
|
('float32', (1, 50000), -1),
|
|
('float32', (1, 2, 50000), -1),
|
|
('float32', (3, 5, 5, 50000), -1),
|
|
],
|
|
name_func=unittest_name_func)
|
|
def test_cumsum(self, dtype, x_shape, dim):
|
|
torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype)
|
|
if 'float' in dtype:
|
|
x_data = torch.rand(x_shape, dtype=torch_dtype, device="cuda")
|
|
else:
|
|
x_data = torch.randint(-100,
|
|
100,
|
|
x_shape,
|
|
dtype=torch_dtype,
|
|
device="cuda")
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.cumsum(x, dim=dim)
|
|
output.mark_output('output', dtype)
|
|
|
|
# trt run
|
|
session = create_session(
|
|
builder,
|
|
network,
|
|
precision='float32' if 'int32' in dtype else dtype)
|
|
inputs = {
|
|
'x': x_data,
|
|
}
|
|
outputs = run_session(session, inputs)
|
|
|
|
# pytorch run
|
|
ref = torch.cumsum(x_data, dim=dim).to(torch_dtype)
|
|
|
|
# compare diff
|
|
tols = {
|
|
"float32": {
|
|
"rtol": 1e-05,
|
|
"atol": 1e-05
|
|
},
|
|
"float16": {
|
|
"rtol": 1e-02,
|
|
"atol": 1e-02
|
|
},
|
|
"int32": {
|
|
"rtol": 0,
|
|
"atol": 0
|
|
},
|
|
}
|
|
torch.testing.assert_close(outputs['output'], ref, **tols[dtype])
|
|
|
|
@parameterized.expand(
|
|
list(
|
|
product(['float32', 'float16', 'int32'],
|
|
[(256, ), (3, 16), (5, 6, 8)], [True, False])) +
|
|
list(product(['float32'], [(3, 5, 5, 50000)],
|
|
[True])), # False seems to be running into a TRT bug
|
|
name_func=unittest_name_func)
|
|
def test_cumsum_dynamic_last_dim(self, dtype, x_shape, prefer_plugin=True):
|
|
dim = -1
|
|
torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype)
|
|
if 'float' in dtype:
|
|
x_data = torch.rand(x_shape, dtype=torch_dtype, device="cuda")
|
|
else:
|
|
x_data = torch.randint(-100,
|
|
100,
|
|
x_shape,
|
|
dtype=torch_dtype,
|
|
device="cuda")
|
|
|
|
shape_except_last_dim = list(x_data.shape[:-1])
|
|
last_dim_size = x_data.shape[-1]
|
|
assert last_dim_size >= 1
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
x = Tensor(
|
|
name='x',
|
|
shape=shape_except_last_dim + [-1], # last dim dynamic
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.cumsum(x,
|
|
dim=dim,
|
|
prefer_plugin=prefer_plugin)
|
|
output.mark_output('output', dtype)
|
|
# needs profile for dynamic shape
|
|
profile = builder.trt_builder.create_optimization_profile()
|
|
profile.set_shape('x', shape_except_last_dim + [1],
|
|
shape_except_last_dim + [last_dim_size],
|
|
shape_except_last_dim + [last_dim_size * 2])
|
|
session = create_session(
|
|
builder,
|
|
network,
|
|
precision='float32' if 'int32' in dtype else dtype,
|
|
optimization_profiles=[profile])
|
|
inputs = {'x': x_data}
|
|
outputs = run_session(session, inputs)
|
|
|
|
ref = torch.cumsum(x_data, dim=dim).to(torch_dtype)
|
|
|
|
# compare diff
|
|
tols = {
|
|
"float32": {
|
|
"rtol": 1e-05,
|
|
"atol": 1e-05
|
|
},
|
|
"float16": {
|
|
"rtol": 1e-02,
|
|
"atol": 1e-02
|
|
},
|
|
"int32": {
|
|
"rtol": 0,
|
|
"atol": 0
|
|
},
|
|
}
|
|
torch.testing.assert_close(outputs['output'], ref, **tols[dtype])
|