TensorRT-LLMs/tests/functional/test_einsum.py
2024-07-17 20:45:02 +08:00

70 lines
2.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestEinsum(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_einsum(self):
dtype = 'float32'
# test data
x_shape = (12, 12, 96, 96)
y_shape = (12, 12, 96, 64)
x_data = torch.rand(x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
y_data = torch.rand(y_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
equation = 'bnth,bnhs->bnts'
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
y = Tensor(name='y',
shape=y_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.einsum(equation, [x, y])
output.mark_output('output', dtype)
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {'x': x_data, 'y': y_data}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.functional.einsum(equation, [x_data, y_data])
# compare diff
torch.testing.assert_close(outputs['output'], ref, atol=5e-3, rtol=2e-4)