mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-27 06:03:09 +08:00
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> open source f8c0381a2bc50ee2739c3d8c2be481b31e5f00bd (#2736) Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> Add note for blackwell (#2742) Update the docs to workaround the extra-index-url issue (#2744) update README.md (#2751) Fix github io pages (#2761) Update
168 lines
6.5 KiB
Python
168 lines
6.5 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
|
|
import tensorrt_llm
|
|
import tensorrt_llm.quantization.layers
|
|
from tensorrt_llm import Tensor
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
|
|
from modelopt.torch.quantization.qtensor import NVFP4QTensor
|
|
from utils.util import skip_pre_blackwell_unittest, unittest_name_func
|
|
|
|
import tensorrt_llm.quantization.functional
|
|
|
|
|
|
def random_quantized_tensor(shape, dtype, block_size):
|
|
raw = torch.rand(shape, dtype=dtype)
|
|
quantized, block_sf, global_sf = NVFP4QTensor.quantize(
|
|
raw, block_size=block_size)
|
|
return raw, quantized, block_sf, global_sf
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level("warning")
|
|
|
|
@parameterized.expand(
|
|
list(
|
|
product([1, 4, 32, 128, 1023], [512, 1024, 2048], ["float16"],
|
|
[16])),
|
|
name_func=unittest_name_func,
|
|
)
|
|
@skip_pre_blackwell_unittest
|
|
def test_nvfp4_qdq(self, batch_size, hidden_size, input_dtype, block_size):
|
|
torch_dtype = tensorrt_llm.str_dtype_to_torch(input_dtype)
|
|
raw, quantized, block_sf, global_sf = random_quantized_tensor(
|
|
(batch_size, hidden_size), torch_dtype, block_size)
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
input = Tensor(shape=(batch_size, hidden_size),
|
|
dtype=input_dtype,
|
|
name="input")
|
|
global_sf_tensor = tensorrt_llm.functional.constant(
|
|
global_sf.cpu().numpy())
|
|
|
|
quantized_tensor, block_sf_tensor = (
|
|
tensorrt_llm.quantization.functional.dynamic_quantize(
|
|
input, global_sf_tensor, block_size=block_size))
|
|
dequantized_tensor = tensorrt_llm.quantization.functional.block_double_dequantize(
|
|
quantized_tensor,
|
|
block_sf_tensor,
|
|
global_sf_tensor,
|
|
dtype="float32")
|
|
output = dequantized_tensor.cast(input_dtype)
|
|
output.mark_output("output")
|
|
|
|
output_buffer = torch.zeros_like(raw)
|
|
stream = torch.cuda.current_stream()
|
|
builder_config = builder.create_builder_config(precision=input_dtype)
|
|
engine = builder.build_engine(net, builder_config)
|
|
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
|
|
session.run(
|
|
inputs={"input": raw},
|
|
outputs={"output": output_buffer},
|
|
stream=stream.cuda_stream,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
ref_dequantized = quantized.dequantize(
|
|
torch_dtype,
|
|
scale=block_sf.float(),
|
|
double_scale=global_sf,
|
|
block_sizes=[16],
|
|
)
|
|
|
|
assert torch.allclose(output_buffer, ref_dequantized)
|
|
|
|
@parameterized.expand(
|
|
list(
|
|
product([1, 16, 128, 1023], [512, 1024], [256, 2048], ["float16"],
|
|
[16])),
|
|
name_func=unittest_name_func,
|
|
)
|
|
@skip_pre_blackwell_unittest
|
|
def test_nvfp4_gemm_ootb(self, batch_size, input_hidden_size,
|
|
output_hidden_size, input_dtype, block_size):
|
|
torch_dtype = tensorrt_llm.str_dtype_to_torch(input_dtype)
|
|
input_raw, input_quantized, input_block_sf, input_global_sf = (
|
|
random_quantized_tensor((batch_size, input_hidden_size),
|
|
torch_dtype, block_size))
|
|
weight_raw, weight_quantized, weight_block_sf, weight_global_sf = (
|
|
random_quantized_tensor((output_hidden_size, input_hidden_size),
|
|
torch_dtype, block_size))
|
|
bias_raw = torch.rand(output_hidden_size, dtype=torch_dtype)
|
|
|
|
linear = tensorrt_llm.quantization.layers.FP4Linear(input_hidden_size,
|
|
output_hidden_size,
|
|
dtype=input_dtype)
|
|
linear.weight.value = weight_quantized._quantized_data
|
|
linear.weights_block_scaling_factor.value = weight_block_sf
|
|
linear.weights_global_scaling_factor.value = weight_global_sf
|
|
linear.activation_global_scaling_factor.value = input_global_sf
|
|
linear.bias.value = bias_raw
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
input = Tensor(shape=(batch_size, input_hidden_size),
|
|
dtype=input_dtype,
|
|
name="input")
|
|
output = linear(input)
|
|
output.mark_output("output")
|
|
|
|
output_buffer = torch.zeros((batch_size, output_hidden_size),
|
|
dtype=torch_dtype)
|
|
stream = torch.cuda.current_stream()
|
|
builder_config = builder.create_builder_config(precision=input_dtype)
|
|
engine = builder.build_engine(net, builder_config)
|
|
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
|
|
session.run(
|
|
inputs={"input": input_raw},
|
|
outputs={"output": output_buffer},
|
|
stream=stream.cuda_stream,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
ref_input = input_quantized.dequantize(
|
|
torch_dtype,
|
|
scale=input_block_sf.float(),
|
|
double_scale=input_global_sf,
|
|
block_sizes=[16],
|
|
)
|
|
|
|
ref_weight = weight_quantized.dequantize(
|
|
torch_dtype,
|
|
scale=weight_block_sf.float(),
|
|
double_scale=weight_global_sf,
|
|
block_sizes=[16],
|
|
)
|
|
|
|
ref_output = torch.nn.functional.linear(ref_input, ref_weight, bias_raw)
|
|
assert torch.allclose(output_buffer, ref_output, atol=1e-3, rtol=1e-3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|