TensorRT-LLMs/cpp/tensorrt_llm/kernels/flashMLA/flash_mla.h
yunruis e5be3a95b3
fix: fix license bug (#5200)
Signed-off-by: yunruis <205571022+yunruis@users.noreply.github.com>
2025-06-13 18:58:15 +08:00

109 lines
3.7 KiB
C++

/*
* MIT License
*
* Copyright (c) 2025 DeepSeek
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* reference: https://github.com/deepseek-ai/FlashMLA
*/
#pragma once
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Flash_fwd_mla_params
{
using index_t = int64_t;
int b, seqlen_q, d, d_v;
int h, h_h_k_ratio, ngroups;
bool is_causal;
float scale_softmax, scale_softmax_log2;
int* __restrict__ cu_seqlens_k;
void* __restrict__ q_ptr;
void* __restrict__ k_ptr;
void* __restrict__ v_ptr;
void* __restrict__ o_ptr;
void* __restrict__ softmax_lse_ptr;
float* __restrict__ descale_q_ptr = nullptr;
float* __restrict__ descale_k_ptr = nullptr;
index_t q_batch_stride;
index_t k_batch_stride;
index_t v_batch_stride;
index_t o_batch_stride;
index_t q_row_stride;
index_t k_row_stride;
index_t v_row_stride;
index_t o_row_stride;
index_t q_head_stride;
index_t k_head_stride;
index_t v_head_stride;
index_t o_head_stride;
int* __restrict__ block_table;
index_t block_table_batch_stride;
int page_block_size;
int* __restrict__ tile_scheduler_metadata_ptr;
int num_sm_parts;
int* __restrict__ num_splits_ptr;
void* __restrict__ softmax_lseaccum_ptr;
void* __restrict__ oaccum_ptr;
};
static constexpr int TileSchedulerMetaDataSize = 8;
// [begin_idx, begin_seqlen, end_idx, end_seqlen, begin_n_split_idx, _, _, _]
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T, typename To, int Headdim>
void run_mha_fwd_splitkv_mla(Flash_fwd_mla_params& params, cudaStream_t stream);
struct Mla_metadata_params
{
int* __restrict__ seqlens_k_ptr;
int* __restrict__ tile_scheduler_metadata_ptr;
int* __restrict__ num_splits_ptr;
int batch_size;
int block_size_n;
int fixed_overhead_num_blocks;
int num_sm_parts;
};
void get_mla_metadata_func(Mla_metadata_params& params, cudaStream_t stream);