TensorRT-LLMs/cpp/tests/resources/scripts/build_llama_engines.py
Kaiyu Xie 655524dd82
Update TensorRT-LLM (#1168)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-27 17:37:34 +08:00

104 lines
3.4 KiB
Python

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
import pathlib as _pl
import platform as _pf
import sys as _sys
from build_engines_utils import run_command, wincopy
def build_engine(weight_dir: _pl.Path, engine_dir: _pl.Path, *args):
ckpt_dir = engine_dir / 'ckpt'
covert_cmd = [_sys.executable, "examples/llama/convert_checkpoint.py"
] + ([f'--model_dir={weight_dir}'] if weight_dir else []) + [
f'--output_dir={ckpt_dir}',
'--dtype=float16',
] + list(args)
run_command(covert_cmd)
build_args = [
'trtllm-build',
f'--checkpoint_dir={ckpt_dir}',
f'--output_dir={engine_dir}',
'--gpt_attention_plugin=float16',
'--use_custom_all_reduce=enable',
'--gemm_plugin=float16',
'--max_batch_size=32',
'--max_input_len=40',
'--max_output_len=20',
'--max_beam_width=2',
'--log_level=error',
'--paged_kv_cache=enable',
'--remove_input_padding=enable',
]
run_command(build_args)
def build_engines(model_cache: str, only_multi_gpu: bool):
resources_dir = _pl.Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
model_name = 'llama-7b-hf'
if model_cache:
print("Copy model from model_cache")
model_cache_dir = _pl.Path(model_cache) / 'llama-models' / model_name
assert (model_cache_dir.is_dir())
if _pf.system() == "Windows":
wincopy(source=str(model_cache_dir),
dest=model_name,
isdir=True,
cwd=models_dir)
else:
run_command(
["rsync", "-av", str(model_cache_dir), "."], cwd=models_dir)
hf_dir = models_dir / model_name
assert hf_dir.is_dir()
engine_dir = models_dir / 'rt_engine' / model_name
tp_pp_sizes = [(1, 1)]
if only_multi_gpu:
tp_pp_sizes = [(1, 4), (4, 1), (2, 2)]
for tp_size, pp_size in tp_pp_sizes:
tp_pp_dir = f"tp{tp_size}-pp{pp_size}-gpu"
print(f"\nBuilding fp16 tp{tp_size} pp{pp_size} engine")
build_engine(hf_dir,
engine_dir / f'fp16-plugin-packed-paged/{tp_pp_dir}',
f'--tp_size={tp_size}', f'--pp_size={pp_size}')
print("Done.")
if __name__ == "__main__":
parser = _arg.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
parser.add_argument(
"--only_multi_gpu",
action="store_true",
help="Flag to build only for Tensor and Pipeline parallelism")
build_engines(**vars(parser.parse_args()))