TensorRT-LLMs/examples/mpt/README.md
Kaiyu Xie 0ab9d17a59
Update TensorRT-LLM (#1055)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-06 18:38:07 +08:00

204 lines
7.2 KiB
Markdown

# MPT
This document explains how to build the [MPT](https://huggingface.co/mosaicml/mpt-7b) model using TensorRT-LLM and run on a single GPU and a single node with multiple GPUs.
## Overview
The TensorRT-LLM MPT implementation can be found in [`tensorrt_llm/models/mpt/model.py`](../../tensorrt_llm/models/mpt/model.py). The TensorRT-LLM MPT example code is located in [`examples/mpt`](./). There is one main file:
* [`convert_checkpoint.py`](./convert_checkpoint.py) to convert a checkpoint from the [HuggingFace (HF) Transformers](https://github.com/huggingface/transformers) format to the TensorRT-LLM format.
In addition, there are two shared files in the parent folder [`examples`](../) for inference and evaluation:
* [`../run.py`](../run.py) to run the inference on an input text;
* [`../summarize.py`](../summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset.
## Support Matrix
* FP16
* FP8 (with FP8 KV Cache)
* INT8 & INT4 Weight-Only
* INT8 Smooth Quant
* INT4 AWQ
* Tensor Parallel
* MHA, MQA & GQA
* STRONGLY TYPED
### MPT 7B
The [`convert_checkpoint.py`](./convert_checkpoint.py) script allows you to convert weights from HF Transformers format to TRTLLM checkpoints.
#### 1.1 Convert from HF Transformers in FP
```bash
# Generate FP16 checkpoints.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/fp16/ --dtype float16
# Generate FP32 checkpoints with TP=4.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/fp32_tp4/ --dtype float32 --tp_size 4
```
#### 1.2 Convert from HF Transformers with weight-only quantization
```bash
# Use int8 weight-only quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/int8_wo/ --use_weight_only
# Use int4 weight-only quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/int4_wo/ --use_weight_only --weight_only_precision int4
```
#### 1.3 Convert from HF Transformers with SmoothQuant quantization
```bash
# Use int8 smoothquant (weight and activation) quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/int8_sq/ --smoothquant 0.5
```
#### 1.4 Convert from HF Transformers with INT8 KV cache quantization
```bash
# Use int8 kv cache quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/fp16_int8kv/ --dtype float16 --calibrate_kv_cache
```
***INT8-KV-cache can be used with SQ and Weight-only at the same time***
***We now introduce AMMO to do all quantization***
First make sure AMMO toolkit is installed (see [examples/quantization/README.md](/examples/quantization/README.md#preparation))
#### 1.5 AWQ weight-only quantization with AMMO
```bash
# INT4 AWQ quantization using AMMO.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/int4_awq/ --qformat int4_awq
```
#### 1.6 FP8 Post-Training Quantization with AMMO
```bash
# FP8 quantization using AMMO.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/fp8/ --qformat fp8 --kv_cache_dtype fp8
```
#### 1.6 Weight-only quantization with AMMO
```bash
# INT8 Weight-only quantization using AMMO with TP=2.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/int8_wo/ --qformat int8_wo --tp_size 2
# INT4 Weight-only quantization using AMMO.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/int4_wo/ --qformat int4_wo
```
#### 1.7 SmoothQuant and INT8 KV cache with AMMO
```bash
# Use int4 awq quantization.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ft_ckpts/mpt-7b/sq_int8kv/ --qformat int8_sq --kv_cache_dtype int8
```
***INT8-KV-cache can also be used with Weight-only at the same time***
### 2.1 Build TensorRT engine(s)
All of the checkpoint generated by `convert_checkpoint.py` or `quantize.py` (AMMO) can share the same building commands.
```bash
# Build a single-GPU float16 engine using TRTLLM checkpoints.
trtllm-build --checkpoint_dir=./ft_ckpts/mpt-7b/fp16/1-gpu \
--max_batch_size 32 \
--max_input_len 1024 \
--max_output_len 512 \
--gemm_plugin
--workers 1 \
--output_dir ./trt_engines/mpt-7b/fp16/1-gpu
```
### MPT 30B
Same commands can be changed to convert MPT 30B to TRT LLM format. Below is an example to build MPT30B fp16 4-way tensor parallelized TRT engine
#### 1. Convert weights from HF Transformers to TRTLLM format
The [`convert_checkpoint.py`](./convert_checkpoint.py) script allows you to convert weights from HF Transformers format to TRTLLM format.
```bash
python convert_checkpoint.py --model_dir mosaicml/mpt-30b --output_dir ./ft_ckpts/mpt-30b/fp16_tp4/ --tp_szie 4 --dtype float16
```
#### 2. Build TensorRT engine(s)
Examples of build invocations:
```bash
# Build 4-GPU MPT-30B float16 engines
trtllm-build --checkpoint_dir ./ft_ckpts/mpt-30b/fp16_tp4 \
--max_batch_size 32 \
--max_input_len 1024 \
--max_output_len 512 \
--gemm_plugin
--workers 4 \
--output_dir ./trt_engines/mpt-30b/fp16_tp4
```
#### 3. Run TRT engine to check if the build was correct
```bash
# Run 4-GPU MPT-30B TRT engine on a sample input prompt
mpirun -n 4 --allow-run-as-root \
python ../run.py --max_output_len 10 \
--engine_dir ./trt_engines/mpt-30b/fp16/4-gpu/ \
--tokenizer_dir mosaicml/mpt-30b
```
### Replit Code V-1.5 3B
Same commands can be changed to convert [Replit Code V-1.5 3B](https://huggingface.co/replit/replit-code-v1_5-3b) to TRT LLM format. Below is an example to build Replit Code V-1.5 3B fp16 2-way tensor parallelized TRT engine.
#### 1. Convert weights from HF Transformers to TRTLLM format
The [`convert_checkpoint.py`](./convert_checkpoint.py) script allows you to convert weights from HF Transformers format to TRTLLM format.
```bash
python convert_checkpoint.py --model_dir ./replit-code-v1_5-3b --output_dir ./ft_ckpts/replit-code-v1_5-3b/bf16_tp2/ --tp_size 2 --dtype bfloat16
```
#### 2. Build TensorRT engine(s)
Examples of build invocations:
```bash
# Build 2-GPU Replit Code V-1.5 3B bfloat16 engines
trtllm-build --checkpoint_dir ./ft_ckpts/replit-code-v1_5-3b/bf16_tp2 \
--max_batch_size 32 \
--max_input_len 1024 \
--max_output_len 512 \
--gemm_plugin \
--workers 2 \
--output_dir ./trt_engines/replit-code-v1_5-3b/bf16_tp2
```
#### 3. Run TRT engine to check if the build was correct
```bash
# Run 2-GPU Replit Code V-1.5 3B TRT engine on a sample input prompt
mpirun -n 2 --allow-run-as-root \
python ../run.py --max_output_len 64 \
--input_text "def fibonacci" \
--engine_dir ./trt_engines/replit-code-v1_5-3b/bf16_tp2 \
--tokenizer_dir ./replit-code-v1_5-3b/
```
Here is the output of above command.
```bash
Input: "def fibonacci"
Output: "(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)
print(fibonacci(10))"
```