TensorRT-LLMs/examples/falcon/README.md
Kaiyu Xie 6755a3f077
Update TensorRT-LLM (#422)
* Update TensorRT-LLM

---------

Co-authored-by: Tltin <TltinDeng01@gmail.com>
Co-authored-by: zhaohb <zhaohbcloud@126.com>
Co-authored-by: Bradley Heilbrun <brad@repl.it>
Co-authored-by: nqbao11 <nqbao11.01@gmail.com>
Co-authored-by: Nikhil Varghese <nikhil@bot-it.ai>
2023-11-18 00:05:54 +08:00

250 lines
11 KiB
Markdown

# Falcon
This document shows how to build and run a Falcon model in TensorRT-LLM on single GPU, single node multi-GPU, and multi-node multi-GPU.
## Overview
The TensorRT-LLM Falcon implementation can be found in [tensorrt_llm/models/falcon/model.py](../../tensorrt_llm/models/falcon/model.py). The TensorRT-LLM Falcon example code is located in [`examples/falcon`](./). There are three main files:
* [`build.py`](./build.py) to build the [TensorRT](https://developer.nvidia.com/tensorrt) engine(s) needed to run the Falcon model,
* [`run.py`](./run.py) to run the inference on an input text,
* and a shared [`../summarize.py`](../summarize.py)to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset using the model.
## Support Matrix
* FP16
* BF16
* FP8
* Groupwise quantization (AWQ)
* STRONGLY TYPED
* FP8 KV CACHE
* Tensor Parallel
## Usage
The TensorRT-LLM Falcon example code is located at [examples/falcon](./). It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference.
### Build TensorRT engine(s)
Need to prepare the HF Falcon checkpoint first by following the guides here https://huggingface.co/docs/transformers/main/en/model_doc/falcon.
```bash
# Setup git-lfs
git lfs install
# falcon-rw-1b
git clone https://huggingface.co/tiiuae/falcon-rw-1b falcon/rw-1b
# falcon-7b-instruct
git clone https://huggingface.co/tiiuae/falcon-7b-instruct falcon/7b-instruct
# falcon-40b-instruct
git clone https://huggingface.co/tiiuae/falcon-40b-instruct falcon/40b-instruct
# falcon-180B
git clone https://huggingface.co/tiiuae/falcon-180B falcon/180b
```
TensorRT-LLM Falcon builds TensorRT engine(s) from HF checkpoint.
If no checkpoint directory is specified, TensorRT-LLM will build engine(s) with dummy weights.
Normally `build.py` only requires a single GPU, but if you've already got all the GPUs needed while inferencing, you could enable parallel building to make the engine building process faster by adding `--parallel_build` argument.
Please note that currently `parallel_build` feature only supports single node.
Here are some examples:
```bash
# Build a single-GPU float16 engine from HF weights.
# It is recommend to use --remove_input_padding along with --use_gpt_attention_plugin for better performance
python build.py --model_dir falcon/rw-1b \
--dtype float16 \
--remove_input_padding \
--use_gpt_attention_plugin float16 \
--use_gemm_plugin float16 \
--output_dir falcon/rw-1b/trt_engines/fp16/1-gpu/
# Single GPU on falcon-7b-instruct
# --use_gpt_attention_plugin is necessary for rotary positional embedding (RoPE)
python build.py --model_dir falcon/7b-instruct \
--dtype bfloat16 \
--use_gemm_plugin bfloat16 \
--remove_input_padding \
--use_gpt_attention_plugin bfloat16 \
--enable_context_fmha \
--output_dir falcon/7b-instruct/trt_engines/bf16/1-gpu/ \
--world_size 1
# Use 2-way tensor parallelism on falcon-40b-instruct
python build.py --model_dir falcon/40b-instruct \
--dtype bfloat16 \
--use_gemm_plugin bfloat16 \
--remove_input_padding \
--use_gpt_attention_plugin bfloat16 \
--enable_context_fmha \
--output_dir falcon/40b-instruct/trt_engines/bf16/2-gpu/ \
--world_size 2 \
--tp_size 2
# Use 2-way tensor parallelism and 2-way pipeline parallelism on falcon-40b-instruct
python build.py --model_dir falcon/40b-instruct \
--dtype bfloat16 \
--use_gemm_plugin bfloat16 \
--use_gpt_attention_plugin bfloat16 \
--enable_context_fmha \
--output_dir falcon/40b-instruct/trt_engines/bf16/2-gpu/ \
--world_size 4 \
--tp_size 2 \
--pp_size 2
# Use 8-way tensor parallelism on falcon-180B, loading weights shard-by-shard.
python build.py --model_dir falcon/180b \
--dtype bfloat16 \
--use_gemm_plugin bfloat16 \
--remove_input_padding \
--use_gpt_attention_plugin bfloat16 \
--enable_context_fmha \
--output_dir falcon/180b/trt_engines/bf16/8-gpu/ \
--world_size 8 \
--tp_size 8 \
--load_by_shard \
--parallel_build
# Use 4-way tensor parallelism and 2-way pipeline parallelism on falcon-180B, loading weights shard-by-shard.
python build.py --model_dir falcon/180b \
--dtype bfloat16 \
--use_gemm_plugin bfloat16 \
--use_gpt_attention_plugin bfloat16 \
--enable_context_fmha \
--output_dir falcon/180b/trt_engines/bf16/8-gpu/ \
--world_size 8 \
--tp_size 4 \
--pp_size 2 \
--load_by_shard \
--parallel_build
```
Note that in order to use N-way tensor parallelism, the number of attention heads must be a multiple of N.
For example, you can't configure 2-way tensor parallelism for [falcon-7b](https://huggingface.co/tiiuae/falcon-7b) or [falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct), because the number of attention heads is 71 (not divisible by 2).
#### FP8 Post-Training Quantization
The examples below uses the NVIDIA AMMO (AlgorithMic Model Optimization) toolkit for the model quantization process.
First make sure AMMO toolkit is installed (see [examples/quantization/README.md](/examples/quantization/README.md#preparation))
Now quantize HF Falcon weights as follows.
After successfully running the script, the output should be in .npz format, e.g. `quantized_fp8/falcon_tp_1_rank0.npz`,
where FP8 scaling factors are stored.
```bash
# Quantize HF Falcon 180B checkpoint into FP8 and export a single-rank checkpoint
python quantize.py --model_dir falcon/180b \
--dtype float16 \
--qformat fp8 \
--export_path quantized_fp8 \
--calib_size 16
# Build Falcon 180B TP=8 using HF checkpoint + PTQ scaling factors from the single-rank checkpoint
python build.py --model_dir falcon/180b \
--quantized_fp8_model_path ./quantized_fp8/falcon_tp1_rank0.npz \
--dtype float16 \
--enable_context_fmha \
--use_gpt_attention_plugin float16 \
--output_dir falcon/180b/trt_engines/fp8/8-gpu/ \
--remove_input_padding \
--enable_fp8 \
--fp8_kv_cache \
--strongly_typed \
--world_size 8 \
--tp_size 8 \
--load_by_shard \
--parallel_build
```
#### Groupwise quantization (AWQ)
One can enable AWQ INT4 weight only quantization with these options when building engine with `build.py`:
- `--use_weight_only` enables weight only GEMMs in the network.
- `--per_group` enable groupwise weight only quantization, for Falcon example, we support AWQ with the group size default as 128.
- `--weight_only_precision` should specify the weight only quantization format. Supported formats are `int4_awq` or `int4_gptq`.
- `--group_size` passes the group size for AWQ with default as 128.
- `--quant_ckpt_path` passes the quantized checkpoint to build the engine.
AWQ example below involves 2 steps:
1. Weight quantization:
NVIDIA AMMO toolkit is used for AWQ weight quantization. Please see [examples/quantization/README.md](/examples/quantization/README.md#preparation) for AMMO installation instructions.
```bash
# Quantize HF Falcon 180B checkpoint into INT4 AWQ format
python quantize.py --model_dir falcon/180B/ \
--dtype float16 \
--qformat int4_awq \
--export_path ./quantized_int4_awq \
--calib_size 32
```
The quantized model checkpoint is saved to path `./quantized_int4_awq/falcon_tp1_rank0.npz` for future TRT-LLM engine build.
2. Build TRT-LLM engine:
```bash
python build.py --model_dir falcon/180B/ \
--quant_ckpt_path ./quantized_int4_awq/falcon_tp1_rank0.npz \
--dtype float16 \
--remove_input_padding \
--use_gpt_attention_plugin float16 \
--enable_context_fmha \
--use_gemm_plugin float16 \
--use_weight_only \
--weight_only_precision int4_awq \
--per_group \
--output_dir ./tmp/falcon/180B/trt_engines/int4_AWQ/1-gpu/
```
### 4. Run
```bash
pip install -r requirements.txt
```
```bash
python ../summarize.py --test_trt_llm \
--hf_model_dir falcon/rw-1b \
--data_type float16 \
--engine_dir falcon/rw-1b/trt_engines/fp16/1-gpu/
python ../summarize.py --test_trt_llm \
--hf_model_dir falcon/7b-instruct \
--data_type bfloat16 \
--engine_dir falcon/7b-instruct/trt_engines/bf16/1-gpu
mpirun -n 2 --allow-run-as-root --oversubscribe \
python ../summarize.py --test_trt_llm \
--hf_model_dir falcon/40b-instruct \
--data_type bfloat16 \
--engine_dir falcon/40b-instruct/trt_engines/bf16/2-gpu
mpirun -n 8 --allow-run-as-root --oversubscribe \
python ../summarize.py --test_trt_llm \
--hf_model_dir falcon/180b \
--data_type bfloat16 \
--engine_dir falcon/180b/trt_engines/bf16/8-gpu
```
## Troubleshooting
### 1. The HuggingFace Falcon may raise an error when using the `accelerate` package.
One may find the following message.
```
Traceback (most recent call last):
File "build.py", line 10, in <module>
from transformers import FalconConfig, FalconForCausalLM
File "<frozen importlib._bootstrap>", line 1039, in _handle_fromlist
File "/usr/local/lib/python3.8/dist-packages/transformers/utils/import_utils.py", line 1090, in __getattr__
value = getattr(module, name)
File "/usr/local/lib/python3.8/dist-packages/transformers/utils/import_utils.py", line 1089, in __getattr__
module = self._get_module(self._class_to_module[name])
File "/usr/local/lib/python3.8/dist-packages/transformers/utils/import_utils.py", line 1101, in _get_module
raise RuntimeError(
RuntimeError: Failed to import transformers.models.falcon.modeling_falcon because of the following error (look up to see its traceback):
```
It may be resolved by pinning the version of `typing-extensions` package by `4.5.0`.
```bash
pip install typing-extensions==4.5.0
```