TensorRT-LLMs/examples/qwenvl/README.md
2024-03-19 17:36:42 +08:00

109 lines
3.9 KiB
Markdown

# Guide to Qwen-VL deployment pipeline
1. Download the Qwen vision-language model (Qwen-VL).
```bash
git lfs install
git clone https://huggingface.co/Qwen/Qwen-VL-Chat
```
2. Generate the Vision Transformer (ViT) ONNX model and the TensorRT engine.
- If you don't have ONNX file, run:
```bash
python3 vit_onnx_trt.py --pretrained_model_path ./Qwen-VL-Chat
```
The ONNX and TensorRT engine will be generated under `./onnx/visual_encoder` and `./plan/visual_encoder` respectively.
- If you already have an ONNX file under `./onnx/visual_encoder` and want to build a TensorRT engine with it, run:
```bash
python3 vit_onnx_trt.py --pretrained_model_path ./Qwen-VL-Chat --only_trt
```
This command saves the test image tensor to `image.pt` for later pipeline inference.
3. Build Qwen TensorRT engine.
- Convert checkpoint
1. Install packages
```bash
pip install -r requirements.txt
```
2. Convert
```bash
python3 ../qwen/convert_checkpoint.py --model_dir=./Qwen-VL-Chat \
--output_dir=./tllm_checkpoint_1gpu
```
- Build TensorRT-LLM engine
NOTE: `max_prompt_embedding_table_size = query_token_num * max_batch_size`, therefore, if you change `max_batch_size`, `--max_prompt_embedding_table_size` must be reset accordingly.
```bash
trtllm-build --checkpoint_dir=./tllm_checkpoint_1gpu \
--gemm_plugin=float16 --gpt_attention_plugin=float16 \
--lookup_plugin=float16 --max_input_len=2048 --max_output_len=1024 \
--max_batch_size=8 --max_prompt_embedding_table_size=2048 \
--remove_input_padding=enable \
--output_dir=./trt_engines/Qwen-VL-7B-Chat
```
The built Qwen engines are located in `./trt_engines/Qwen-VL-7B-Chat`.
For more information about Qwen, refer to the README.md in [`example/qwen`](../qwen).
4. Assemble everything into the Qwen-VL pipeline.
4.1 Run with INT4 GPTQ weight-only quantization engine
```bash
python3 run.py \
--tokenizer_dir=./Qwen-VL-Chat \
--qwen_engine_dir=./trt_engines/Qwen-VL-7B-Chat \
--vit_engine_dir=./plan \
--images_path='{"image": "./pics/demo.jpeg"}' \
--input_dir='{"image": "image.pt"}'
```
4.2 (Optional) For multiple rounds of dialogue, you can run:
```bash
python3 run_chat.py \
--tokenizer_dir=./Qwen-VL-Chat \
--qwen_engine_dir=./trt_engines/Qwen-VL-7B-Chat \
--vit_engine_dir=./plan \
--images_path='{"image": "./pics/demo.jpeg"}' \
--input_dir='{"image": "image.pt"}'
```
4.3 (Optional) To show the bounding box result in the demo picture, install OpenCV, ZMQ, and request:
```bash
pip install opencv-python==4.5.5.64
pip install opencv-python-headless==4.5.5.64
pip install zmq
pip install request
```
  4.3.1 If the current program is executed on a remote machine, run the following command on a local machine:
```bash
python3 show_pic.py --ip=127.0.0.1 --port=8006
```
  Replace the `ip` and `port` values, where `ip` is your remote machine IP address.
  Run the following command on the remote machine:
```bash
python3 run_chat.py \
--tokenizer_dir=./Qwen-VL-Chat \
--qwen_engine_dir=./trt_engines/Qwen-VL-7B-Chat \
--vit_engine_dir=./plan \
--display \
--port=8006
```
  Replace the `port` value.
  4.3.2 If the current program is executed on the local machine, run the following command:
```bash
python3 run_chat.py \
--tokenizer_dir=./Qwen-VL-Chat \
--qwen_engine_dir=./trt_engines/Qwen-VL-7B-Chat \
--vit_engine_dir=./plan \
--display \
--local_machine
```
  The question "Print the bounding box of the girl" is displayed. You should see the following image:
![image](./pics/1.png)