TensorRT-LLMs/docs/source/quick-start-guide.md
Daniel Cámpora df19430629
chore: Mass Integration 0.19 (#4255)
* fix: Fix/fused moe 0.19 (#3799)

* fix bug of stream init

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* fix bug

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

---------

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* fix: Add pre-download of checkpoint before benchmark. (#3772)

* Add pre-download of checkpoint before benchmark.

Signed-off-by: Frank Di Natale <3429989+FrankD412@users.noreply.github.com>

* Add missing remote code flag.

Signed-off-by: Frank Di Natale <3429989+FrankD412@users.noreply.github.com>

* Move from_pretrained to throughput benchmark.

Signed-off-by: Frank Di Natale <3429989+FrankD412@users.noreply.github.com>

* Move download and use snapshot_download.

Signed-off-by: Frank Di Natale <3429989+FrankD412@users.noreply.github.com>

* Removed trusted flag.

Signed-off-by: Frank Di Natale <3429989+FrankD412@users.noreply.github.com>

* Fix benchmark command in iteration log test.

Signed-off-by: Frank Di Natale <3429989+FrankD412@users.noreply.github.com>

---------

Signed-off-by: Frank Di Natale <3429989+FrankD412@users.noreply.github.com>

* [https://nvbugspro.nvidia.com/bug/5241495][fix] CUDA Graph padding with overlap scheduler (#3839)

* fix

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* fuse

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* fix

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* fix

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

---------

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* TRTLLM-4875 feat: Add version switcher to doc (#3871)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

* waive a test (#3897)

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>

* docs:fix https://nvbugs/5244616 by removing new invalid links. (#3939)

Signed-off-by: nv-guomingz <37257613+nv-guomingz@users.noreply.github.com>
Co-authored-by: nv-guomingz <37257613+nv-guomingz@users.noreply.github.com>

* fix: remote mpi session abort (#3884)

* fix remote mpi session

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>

* fix

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>

---------

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>

* skip fp8 gemm for pre-hopper (#3931)

Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com>

* [https://nvbugspro.nvidia.com/bug/5247148][fix] Attention DP with overlap scheduler (#3975)

* fix

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* update multigpu list

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* fix namings

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

---------

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* Doc: Fix H200 DeepSeek R1 perf doc (#4006)

* fix doc

Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com>

* update perf number

Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com>

---------

Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com>

* Fix the perf regression caused by insufficient cache warmup. (#4042)

Force tuning up to 8192 sequence length for NVFP4 linear op. Also, make this runtime-selectable with UB enabled.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* doc: Update 0.19.0 release notes (#3976)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

* Optimize the AutoTuner cache access code to reduce host code overhead. (#4060)

The NVFP4 Linear op is very sensitive to the host overhead.
This PR introduces customizable `find_nearest_profile` and `get_cache_key_specifc`, which allow users to override the default method for generating the cache key.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Update switcher (#4098)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

* doc: update release notes (#4108)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

* docs:update 0.19 doc. (#4120)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

* docs:add torch flow supported model list. (#4129)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

* doc: Release V0.19 Perf Overview Update (#4166)

Signed-off-by: zpatel <22306219+zbpatel@users.noreply.github.com>

* Fix readme of autodeploy.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Update tensorrt_llm/_torch/pyexecutor/llm_request.py

Co-authored-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
Signed-off-by: Daniel Cámpora <961215+dcampora@users.noreply.github.com>

* Revert mgmn worker node.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Change to disable_overlap_scheduler.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

---------

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>
Signed-off-by: Frank Di Natale <3429989+FrankD412@users.noreply.github.com>
Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>
Signed-off-by: nv-guomingz <37257613+nv-guomingz@users.noreply.github.com>
Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com>
Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com>
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
Signed-off-by: zpatel <22306219+zbpatel@users.noreply.github.com>
Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
Signed-off-by: Daniel Cámpora <961215+dcampora@users.noreply.github.com>
Co-authored-by: bhsueh_NV <11360707+byshiue@users.noreply.github.com>
Co-authored-by: Frank <3429989+FrankD412@users.noreply.github.com>
Co-authored-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
Co-authored-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Co-authored-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
Co-authored-by: nv-guomingz <37257613+nv-guomingz@users.noreply.github.com>
Co-authored-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com>
Co-authored-by: jiahanc <173873397+jiahanc@users.noreply.github.com>
Co-authored-by: Yukun He <23156053+hyukn@users.noreply.github.com>
Co-authored-by: Zac Patel <22306219+zbpatel@users.noreply.github.com>
2025-05-16 10:53:25 +02:00

6.9 KiB

(quick-start-guide)=

Quick Start Guide

This is the starting point to try out TensorRT-LLM. Specifically, this Quick Start Guide enables you to quickly get setup and send HTTP requests using TensorRT-LLM.

LLM API

The LLM API is a Python API designed to facilitate setup and inference with TensorRT-LLM directly within Python. It enables model optimization by simply specifying a HuggingFace repository name or a model checkpoint. The LLM API streamlines the process by managing checkpoint conversion, engine building, engine loading, and model inference, all through a single Python object.

Here is a simple example to show how to use the LLM API with TinyLlama.

    :language: python
    :linenos:

You can also directly load TensorRT Model Optimizer's quantized checkpoints on Hugging Face in the LLM constructor. To learn more about the LLM API, check out the and .

(deploy-with-trtllm-serve)=

Deploy with trtllm-serve

You can use the trtllm-serve command to start an OpenAI compatible server to interact with a model. To start the server, you can run a command like the following example:

trtllm-serve "TinyLlama/TinyLlama-1.1B-Chat-v1.0"

After the server starts, you can access familiar OpenAI endpoints such as v1/chat/completions. You can run inference such as the following example:

curl -X POST http://localhost:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -H "Accept: application/json" \
    -d '{
        "model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
        "messages":[{"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": "Where is New York? Tell me in a single sentence."}],
        "max_tokens": 32,
        "temperature": 0
    }'

Example Output

{
  "id": "chatcmpl-ef648e7489c040679d87ed12db5d3214",
  "object": "chat.completion",
  "created": 1741966075,
  "model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "New York is a city in the northeastern United States, located on the eastern coast of the state of New York.",
        "tool_calls": []
      },
      "logprobs": null,
      "finish_reason": "stop",
      "stop_reason": null
    }
  ],
  "usage": {
    "prompt_tokens": 43,
    "total_tokens": 69,
    "completion_tokens": 26
  }
}

For examples and command syntax, refer to the trtllm-serve section.

Model Definition API

Prerequisites

  • This quick start uses the Meta Llama 3.1 model. This model is subject to a particular license. To download the model files, agree to the terms and authenticate with Hugging Face.

  • Complete the installation steps.

  • Pull the weights and tokenizer files for the chat-tuned variant of the Llama 3.1 8B model from the Hugging Face Hub.

    git clone https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
    

(quick-start-guide-compile)=

Compile the Model into a TensorRT Engine

Use the Llama model definition from the examples/models/core/llama directory of the GitHub repository. The model definition is a minimal example that shows some of the optimizations available in TensorRT-LLM.

# From the root of the cloned repository, start the TensorRT-LLM container
make -C docker release_run LOCAL_USER=1

# Log in to huggingface-cli
# You can get your token from huggingface.co/settings/token
huggingface-cli login --token *****

# Convert the model into TensorRT-LLM checkpoint format
cd examples/models/core/llama
pip install -r requirements.txt
pip install --upgrade transformers # Llama 3.1 requires transformer 4.43.0+ version.
python3 convert_checkpoint.py --model_dir Meta-Llama-3.1-8B-Instruct --output_dir llama-3.1-8b-ckpt

# Compile model
trtllm-build --checkpoint_dir llama-3.1-8b-ckpt \
    --gemm_plugin float16 \
    --output_dir ./llama-3.1-8b-engine

When you create a model definition with the TensorRT-LLM API, you build a graph of operations from NVIDIA TensorRT primitives that form the layers of your neural network. These operations map to specific kernels; prewritten programs for the GPU.

In this example, we included the gpt_attention plugin, which implements a FlashAttention-like fused attention kernel, and the gemm plugin, that performs matrix multiplication with FP32 accumulation. We also called out the desired precision for the full model as FP16, matching the default precision of the weights that you downloaded from Hugging Face. For more information about plugins and quantizations, refer to the Llama example and {ref}precision section.

Run the Model

Now that you have the model engine, run the engine and perform inference.

python3 ../run.py --engine_dir ./llama-3.1-8b-engine  --max_output_len 100 --tokenizer_dir Meta-Llama-3.1-8B-Instruct --input_text "How do I count to nine in French?"

Deploy with Triton Inference Server

To create a production-ready deployment of your LLM, use the Triton Inference Server backend for TensorRT-LLM to leverage the TensorRT-LLM C++ runtime for rapid inference execution and include optimizations like in-flight batching and paged KV caching. Triton Inference Server with the TensorRT-LLM backend is available as a pre-built container through NVIDIA NGC.

  1. Clone the TensorRT-LLM backend repository:
cd ..
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
cd tensorrtllm_backend
  1. Refer to End to end workflow to run llama 7b in the TensorRT-LLM backend repository to deploy the model with Triton Inference Server.

Next Steps

In this Quick Start Guide, you:

  • Saw an example of the LLM API
  • Learned about deploying a model with trtllm-serve
  • Learned about the Model Definition API

For more examples, refer to:

  • examples for showcases of how to run a quick benchmark on latest LLMs.