mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
318 lines
12 KiB
Markdown
318 lines
12 KiB
Markdown
# Benchmark for C++ Runtime
|
||
|
||
This document explains how to benchmark the models supported by TensorRT-LLM on a single GPU, a single node with
|
||
multiple GPUs or multiple nodes with multiple GPUs.
|
||
|
||
## Usage
|
||
|
||
### 1. Build TensorRT-LLM and benchmarking source code
|
||
|
||
Please follow the [`installation document`](../../README.md#installation) to build TensorRT-LLM.
|
||
|
||
Note that the benchmarking source code for C++ runtime is not built by default, you can use the argument `--benchmarks` in [`build_wheel.py`](source:scripts/build_wheel.py) to build the corresponding executable.
|
||
|
||
Windows users: Follow the
|
||
[`Windows installation document`](../../windows/README.md)
|
||
instead, and be sure to set DLL paths as specified in
|
||
[Extra Steps for C++ Runtime Usage](../../windows/README.md#extra-steps-for-c-runtime-usage).
|
||
|
||
### 2. Launch C++ benchmarking (Fixed BatchSize/InputLen/OutputLen)
|
||
|
||
#### Prepare TensorRT-LLM engine(s)
|
||
|
||
Before you launch C++ benchmarking, please make sure that you have already built engine(s) using TensorRT-LLM API, C++ benchmarking code cannot generate engine(s) for you.
|
||
|
||
Use `trtllm-build` to build the TRT-LLM engine. Alternatively, if you have already benchmarked Python Runtime, you can reuse the engine(s) built previously, please see that [`document`](../python/README.md).
|
||
|
||
#### Launch benchmarking
|
||
|
||
For detailed usage, you can do the following
|
||
```
|
||
cd cpp/build
|
||
|
||
# You can directly execute the binary for help information
|
||
./benchmarks/gptSessionBenchmark --help
|
||
./benchmarks/bertBenchmark --help
|
||
```
|
||
|
||
Take GPT-350M as an example for single GPU
|
||
|
||
```
|
||
./benchmarks/gptSessionBenchmark \
|
||
--engine_dir "../../benchmarks/gpt_350m/" \
|
||
--batch_size "1" \
|
||
--input_output_len "60,20"
|
||
|
||
# Expected output:
|
||
# [BENCHMARK] batch_size 1 input_length 60 output_length 20 latency(ms) 40.81
|
||
```
|
||
Take GPT-175B as an example for multiple GPUs
|
||
```
|
||
mpirun -n 8 ./benchmarks/gptSessionBenchmark \
|
||
--engine_dir "../../benchmarks/gpt_175b/" \
|
||
--batch_size "1" \
|
||
--input_output_len "60,20"
|
||
|
||
# Expected output:
|
||
# [BENCHMARK] batch_size 1 input_length 60 output_length 20 latency(ms) 792.14
|
||
```
|
||
|
||
If you want to obtain context and generation logits, you could build an enigne with `--gather_context_logits` and `--gather_generation_logits`, respectively. Enable `--gather_all_token_logits` will enable both of them.
|
||
|
||
If you want to get the logits, you could run gptSessionBenchmark with `--print_all_logits`. This will print a large number of logit values and has a certain impact on performance.
|
||
|
||
*Please note that the expected outputs in that document are only for reference, specific performance numbers depend on the GPU you're using.*
|
||
|
||
### 3. Launch Batch Manager benchmarking (Inflight/V1 batching)
|
||
|
||
#### Prepare dataset
|
||
|
||
Run a preprocessing script to prepare/generate dataset into a json that gptManagerBenchmark can consume later. The processed output json has *input token ids, output tokens length and time delays* to control request rate by gptManagerBenchmark.
|
||
|
||
This tool can be used in 2 different modes of traffic generation.
|
||
|
||
##### 1 – Dataset
|
||
|
||
The tool will tokenize the words and instruct the model to generate a specified number of output tokens for a request.
|
||
|
||
```
|
||
python3 prepare_dataset.py \
|
||
--tokenizer <path/to/tokenizer> \
|
||
--output preprocessed_dataset.json
|
||
[--request-rate 10] \
|
||
[--time-delay-dist exponential_dist] \
|
||
dataset
|
||
--dataset-name <name of the dataset> \
|
||
--dataset-input-key <dataset dictionary key for input> \
|
||
--dataset-prompt-key <dataset dictionary key for prompt> \
|
||
--dataset-output-key <dataset dictionary key for output> \
|
||
[--num-requests 100] \
|
||
[--max-input-len 1000] \
|
||
[--output-len-dist 100,10]
|
||
```
|
||
|
||
For datasets that don't have prompt key, set --dataset-prompt instead.
|
||
Take [cnn_dailymail dataset](https://huggingface.co/datasets/cnn_dailymail) for example:
|
||
```
|
||
python3 prepare_dataset.py \
|
||
--tokenizer <path/to/tokenizer> \
|
||
--output cnn_dailymail.json
|
||
dataset
|
||
--dataset-name cnn_dailymail \
|
||
--dataset-config-name 3.0.0 \
|
||
--dataset-input-key article \
|
||
--dataset-prompt "Summarize the following article:" \
|
||
--dataset-output-key "highlights" \
|
||
[--num-requests 100] \
|
||
[--max-input-len 1000] \
|
||
[--output-len-dist 100,10]
|
||
```
|
||
|
||
##### 2 – Normal token length distribution
|
||
|
||
This mode allows the user to generate normal token length distributions with a mean and std deviation specified.
|
||
For example, setting mean=100 and std dev=10 would generate requests where 95.4% of values are in <80,120> range following the normal probability distribution. Setting std dev=0 will generate all requests with the same mean number of tokens.
|
||
|
||
```
|
||
python prepare_dataset.py \
|
||
--output token-norm-dist.json \
|
||
--request-rate 10 \
|
||
--time-delay-dist constant \
|
||
--tokenizer <path/to/tokenizer> \
|
||
token-norm-dist \
|
||
--num-requests 100 \
|
||
--input-mean 100 --input-stdev 10 \
|
||
--output-mean 15 --output-stdev 0
|
||
```
|
||
|
||
For `tokenizer`, specifying the path to the local tokenizer that have already been downloaded, or simply the name of the tokenizer from HuggingFace like `meta-llama/Llama-2-7b` will both work. The tokenizer will be downloaded automatically for the latter case.
|
||
|
||
|
||
#### Prepare TensorRT-LLM engines
|
||
Please make sure that the engines are built with argument `--use_inflight_batching` and `--remove_input_padding` if you'd like to benchmark inflight batching, for more details, please see the document in TensorRT-LLM examples.
|
||
|
||
#### Launch benchmarking
|
||
|
||
For detailed usage, you can do the following
|
||
```
|
||
cd cpp/build
|
||
|
||
# You can directly execute the binary for help information
|
||
./benchmarks/gptManagerBenchmark --help
|
||
```
|
||
|
||
Take GPT-350M as an example for single GPU V1 batching
|
||
```
|
||
./benchmarks/gptManagerBenchmark \
|
||
--engine_dir ../../examples/gpt/trt_engine/gpt2/fp16/1-gpu/ \
|
||
--type V1 \
|
||
--dataset ../../benchmarks/cpp/preprocessed_dataset.json
|
||
--max_num_samples 500
|
||
```
|
||
|
||
Take GPT-350M as an example for 2-GPU inflight batching
|
||
```
|
||
mpirun -n 2 ./benchmarks/gptManagerBenchmark \
|
||
--engine_dir ../../examples/gpt/trt_engine/gpt2-ib/fp16/2-gpu/ \
|
||
--type IFB \
|
||
--dataset ../../benchmarks/cpp/preprocessed_dataset.json
|
||
--max_num_samples 500
|
||
```
|
||
|
||
`gptManagerBenchmark` can also be used with the high-level C++ API defined by the `executor::Executor` class (see `cpp/include/tensorrt_llm/executor/executor.h`). This can be done by passing the argument `--api executor`. Note that the Executor class is still under development and currently does not support models with tp or pp > 1.
|
||
|
||
#### Emulated static batching
|
||
|
||
To emulate `gptSessionBenchmark` static batching, you can use `gptManagerBenchmark` with the `--static_emulated_batch_size` and `--static_emulated-timeout` arguments.
|
||
Given a `static_emulated_batch_size` of `n` the server will wait for `n` requests to arrive before submitting them to the batch manager at once. If the `static_emulated_timeout` (in ms) is reached before `n` requests are collected, the batch will be submitted prematurely with the current request count. New batches will only be submitted once the previous batch has been processed comepletely.
|
||
|
||
`gptSessionBenchmark` uses fixed input/output lengths for benchmarking. A similar dataset for `gptManagerBenchmark` can be generated with the preprocessing script, e.g.
|
||
```
|
||
python prepare_dataset.py \
|
||
--output tokens-fixed-lengths.json \
|
||
--request-rate -1 \
|
||
--time-delay-dist constant \
|
||
--tokenizer <path/to/tokenizer> \
|
||
token-norm-dist \
|
||
--num-requests 128 \
|
||
--input-mean 60 --input-stdev 0 \
|
||
--output-mean 20 --output-stdev 0
|
||
```
|
||
|
||
Take GPT-350M as an example for single GPU with static batching
|
||
```
|
||
./benchmarks/gptManagerBenchmark \
|
||
--engine_dir ../../examples/gpt/trt_engine/gpt2/fp16/1-gpu/ \
|
||
--type IFB \
|
||
--static_emulated_batch_size 32 \
|
||
--static_emulated_timeout 100 \
|
||
--dataset ../../benchmarks/cpp/tokens-fixed-lengths.json
|
||
```
|
||
|
||
#### Benchmarking LoRA
|
||
|
||
Using either of the `prepare_dataset.py` methods above, add `--rand-task-id <start-id> <end-id>` to the command. This will add a random `task_id` from `<start-id>` to `<end-id>` inclusive.
|
||
You can then use `utils/generate_rand_loras.py` to generate random LoRA weights for benchmarking purposes. `utils/generate_rand_loras.py` takes an example LoRA for the model you are benchmarking.
|
||
Then you can run `gptManagerBenchmark` with `--type IFB` and `--lora_dir /path/to/utils/generate_rand_loras/output`
|
||
|
||
End-to-end LoRA benchmarking script
|
||
|
||
```
|
||
git-lfs clone https://huggingface.co/meta-llama/Llama-2-13b-hf
|
||
git-lfs clone https://huggingface.co/hfl/chinese-llama-2-lora-13b
|
||
|
||
MODEL_CHECKPOINT=Llama-2-13b-hf
|
||
CONVERTED_CHECKPOINT=Llama-2-13b-hf-ckpt
|
||
TOKENIZER=Llama-2-13b-hf
|
||
LORA_ENGINE=Llama-2-13b-hf-engine
|
||
|
||
DTYPE=float16
|
||
TP=2
|
||
PP=1
|
||
MAX_LEN=1024
|
||
MAX_BATCH=32
|
||
MAX_LORA_RANK=32
|
||
|
||
SOURCE_LORA=chinese-llama-2-lora-13b
|
||
CPP_LORA=chinese-llama-2-lora-13b-cpp
|
||
|
||
EG_DIR=/tmp/lora-eg
|
||
|
||
# Build lora enabled engine
|
||
python examples/llama/convert_checkpoint.py --model_dir ${MODEL_CHECKPOINT} \
|
||
--output_dir ${CONVERTED_CHECKPOINT} \
|
||
--dtype ${DTYPE} \
|
||
--tp_size ${TP} \
|
||
--pp_size 1 \
|
||
--lora_target_modules attn_qkv \
|
||
--max_lora_rank ${MAX_LORA_RANK}
|
||
|
||
${HOME}/.local/bin/trtllm-build \
|
||
--checkpoint_dir ${CONVERTED_CHECKPOINT} \
|
||
--output_dir ${LORA_ENGINE} \
|
||
--max_batch_size ${MAX_BATCH} \
|
||
--max_input_len $MAX_LEN \
|
||
--max_output_len $MAX_LEN \
|
||
--gpt_attention_plugin float16 \
|
||
--paged_kv_cache enable \
|
||
--remove_input_padding enable \
|
||
--gemm_plugin float16 \
|
||
--lora_plugin float16 \
|
||
--use_paged_context_fmha enable \
|
||
--use_custom_all_reduce disable
|
||
|
||
NUM_LORAS=(8 16 24 32 64 128 256)
|
||
NUM_REQUESTS=1024
|
||
|
||
# Convert LoRA to cpp format
|
||
python examples/gpt/nemo_lora_convert.py \
|
||
-i $SOURCE_LORA \
|
||
--storage-type $DTYPE \
|
||
--write-cpp-runtime-tensors \
|
||
-o $CPP_LORA
|
||
|
||
# Prepare datasets
|
||
mkdir -p $EG_DIR/data
|
||
|
||
# Prepare dataset without lora_task_id
|
||
python benchmarks/cpp/prepare_dataset.py \
|
||
--output "${EG_DIR}/data/token-norm-dist.json" \
|
||
--request-rate -1 \
|
||
--time-delay-dist constant \
|
||
--tokenizer $TOKENIZER \
|
||
token-norm-dist \
|
||
--num-requests $NUM_REQUESTS \
|
||
--input-mean 256 --input-stdev 16 --output-mean 128 --output-stdev 24
|
||
|
||
# Prepare dataset with lora_task_ids from 0 - $nloras
|
||
for nloras in ${NUM_LORAS[@]}; do
|
||
python benchmarks/cpp/prepare_dataset.py \
|
||
--output "${EG_DIR}/data/token-norm-dist-lora-${nloras}.json" \
|
||
--request-rate -1 \
|
||
--time-delay-dist constant \
|
||
--rand-task-id 0 $(( $nloras - 1 )) \
|
||
--tokenizer $TOKENIZER \
|
||
token-norm-dist \
|
||
--num-requests $NUM_REQUESTS \
|
||
--input-mean 256 --input-stdev 16 --output-mean 128 --output-stdev 24
|
||
done
|
||
|
||
# Generate random lora weights for 256 adapters
|
||
python benchmarks/cpp/utils/generate_rand_loras.py ${CPP_LORA} ${EG_DIR}/loras 256
|
||
|
||
# perform benchmarking
|
||
|
||
# First run inference without LoRAs
|
||
mkdir -p ${EG_DIR}/log-base-lora
|
||
mpirun -n ${TP} --output-filename ${EG_DIR}/log-base-lora \
|
||
cpp/build_Debug/benchmarks/gptManagerBenchmark \
|
||
--engine_dir $LORA_ENGINE \
|
||
--type IFB \
|
||
--dataset "${EG_DIR}/data/token-norm-dist.json" \
|
||
--lora_host_cache_bytes 8589934592 \
|
||
--lora_num_device_mod_layers $(( 32 * $NUM_LAYERS * $NUM_LORA_MODS * $MAX_LORA_RANK )) \
|
||
--kv_cache_free_gpu_mem_fraction 0.80 \
|
||
--log_level info \
|
||
--eos_id ${EOS_ID}
|
||
|
||
# Now run inference with various numbers or loras
|
||
# The host cache is set large enough to hold all the LoRAs in lora_dir
|
||
# GPU cache is set to hold 32 LoRAs
|
||
# This benchmark will preload all the LoRAs into the host cache
|
||
# We run inference on a range of active LoRAs exercising different cache miss rates.
|
||
for nloras in ${NUM_LORAS[@]}; do
|
||
mkdir -p ${EG_DIR}/log-lora-${nloras}
|
||
mpirun -n ${TP} --output-filename "${EG_DIR}/log-lora-${nloras}" \
|
||
cpp/build_Debug/benchmarks/gptManagerBenchmark \
|
||
--engine_dir $LORA_ENGINE \
|
||
--type IFB \
|
||
--dataset "${EG_DIR}/data/token-norm-dist-lora-${nloras}.json" \
|
||
--lora_host_cache_bytes 8589934592 \
|
||
--lora_num_device_mod_layers $(( 32 * $NUM_LAYERS * $NUM_LORA_MODS * $MAX_LORA_RANK )) \
|
||
--kv_cache_free_gpu_mem_fraction 0.80 \
|
||
--log_level info \
|
||
--eos_id ${EOS_ID} \
|
||
--lora_dir ${EG_DIR}/loras
|
||
done
|
||
```
|