TensorRT-LLMs/tensorrt_llm/scaffolding/task.py
2025-07-04 09:35:34 +08:00

97 lines
2.9 KiB
Python

from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from tensorrt_llm.serve.openai_protocol import StreamOptions
class ScaffoldingOutput:
def __init__(self):
self.output_str = None
@dataclass
class Task:
# Reserve for custom input params.
custom_input_params: Optional[dict] = None
# Scaffolding delivers the task to the Worker by worker_tag.
worker_tag: str = field(default=None)
# Reserve for custom output params.
custom_output_params: Optional[dict] = None
class TaskStatus(Enum):
SUCCESS = "success"
WORKER_NOT_SUPPORTED = "worker_not_supported"
WORKER_EXECEPTION = "worker_exception"
@dataclass
class GenerationTask(Task):
# input field
input_tokens: Optional[List[int]] = None
input_str: Optional[str] = None
skip_tokenizer: bool = False
skip_detokenizer: bool = False
# sampling params for openai
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/completions/create
# The special case is `num_logprobs`, its original name si `logprobs` but conflicted by the result field
best_of: Optional[int] = None
echo: Optional[bool] = False
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
num_logprobs: Optional[int] = None
max_tokens: Optional[int] = 2048
n: int = 1
presence_penalty: Optional[float] = 0.0
seed: Optional[int] = None
stop: Optional[Union[str, List[str]]] = field(default_factory=list)
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
suffix: Optional[str] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
user: Optional[str] = None
# sampling params
top_k: Optional[int] = None
return_context_logits: Optional[bool] = False
# suggest to use Controller.WorkerTag
# anyway, users need to ensure that the value of the worker_tag can be found in the scaffoldingLlm's workers map
worker_tag: Union[str, "Controller.WorkerTag"] = None
# result field
output_tokens: List[int] = None
output_str: Optional[str] = None
cumulative_logprob: Optional[float] = None
logprobs: Optional[List[float]] = None
context_logits: Optional[torch.Tensor] = None
@staticmethod
def create_from_prompt(prompt: str) -> "GenerationTask":
task = GenerationTask()
task.input_str = prompt
task.skip_tokenizer = False
task.skip_detokenizer = False
return task
def create_scaffolding_output(self) -> "ScaffoldingOutput":
output = ScaffoldingOutput()
output.output_str = self.output_str
return output
@dataclass
class RewardTask(Task):
# input field
input_tokens: Optional[List[int]] = field(default=None)
input_str: Optional[str] = field(default=None)