TensorRT-LLMs/examples/llm-api/llm_medusa_decoding.py
Kaiyu Xie aaacc9bd68
Update TensorRT-LLM (#2562)
* Update TensorRT-LLM

---------

Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
2024-12-11 00:31:05 -08:00

57 lines
2.6 KiB
Python

### Generate Text Using Medusa Decoding
from tensorrt_llm import LLM, SamplingParams
from tensorrt_llm.llmapi import (LLM, BuildConfig, KvCacheConfig,
MedusaDecodingConfig, SamplingParams)
from tensorrt_llm.models.modeling_utils import SpeculativeDecodingMode
def main():
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# The end user can customize the sampling configuration with the SamplingParams class
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# The end user can customize the build configuration with the BuildConfig class
build_config = BuildConfig(
max_batch_size=1,
max_seq_len=1024,
max_draft_len=63,
speculative_decoding_mode=SpeculativeDecodingMode.MEDUSA)
# The end user can customize the kv cache configuration with the KVCache class
kv_cache_config = KvCacheConfig(enable_block_reuse=True)
# The end user can customize the medusa decoding configuration by specifying the
# medusa heads num and medusa choices with the MedusaDecodingConfig class
speculative_config = MedusaDecodingConfig(num_medusa_heads=4,
medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], \
[0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], \
[0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], \
[0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], \
[6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], \
[0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]
)
llm = LLM(model="lmsys/vicuna-7b-v1.3",
speculative_model="FasterDecoding/medusa-vicuna-7b-v1.3",
build_config=build_config,
kv_cache_config=kv_cache_config,
speculative_config=speculative_config)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
if __name__ == '__main__':
main()