TensorRT-LLMs/tensorrt_llm/models/phi3/phi3small/model.py
Kaiyu Xie b777bd6475
Update TensorRT-LLM (#1725)
* Update TensorRT-LLM

---------

Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Tlntin <TlntinDeng01@Gmail.com>
Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com>
Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com>
Co-authored-by: Nathan Price <nathan@abridge.com>
Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com>
Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
2024-06-04 20:26:32 +08:00

258 lines
10 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import safetensors
from transformers import AutoModelForCausalLM
from ...._utils import pad_vocab_size
from ....functional import PositionEmbeddingType, Tensor
from ....layers import (MLP, Attention, AttentionMaskType,
BlockSparseAttnParams, Embedding, LayerNorm,
ParallelLMHead)
from ....module import Module
from ...modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
PretrainedConfig)
from .convert import convert_hf_config, convert_hf_weights
class Phi3SmallDecoderLayer(Module):
def __init__(self, config: PretrainedConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
tp_group = config.mapping.tp_group
tp_size = config.mapping.tp_size
self.gegelu_limit = config.gegelu_limit
self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size,
dtype=config.dtype)
# MuP uses norm_factor=attention_head_size (rather than sqrt(attention_head_size))
# We achieve this using q_scaling = sqrt(attention_head_size)
hidden_size = config.hidden_size
num_attention_heads = config.num_attention_heads
attention_head_size = hidden_size / num_attention_heads
q_scaling = attention_head_size**.5
block_sparse = (
(layer_idx + 1) % config.dense_attention_every_n_layers) != 0
attention_mask_type = AttentionMaskType.blocksparse if block_sparse else AttentionMaskType.causal
block_sparse_attn_params = BlockSparseAttnParams(
config.blocksparse_block_size, config.blocksparse_homo_head_pattern,
config.blocksparse_num_local_blocks,
config.blocksparse_vertical_stride)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
local_layer_idx = layer_idx - layers_range[0]
position_embedding_type = PositionEmbeddingType.rope_gpt_neox
original_max_position_embeddings = config.max_position_embeddings
rope_scaling_short_factors, rope_scaling_long_factors = 1.0, 1.0
rope_scaling_short_mscale, rope_scaling_long_mscale = 1.0, 1.0
if hasattr(config, "longrope_scaling_short_factors"):
rope_scaling_short_factors = np.asarray(
config.longrope_scaling_short_factors).astype(np.float32)
rope_scaling_long_factors = np.asarray(
config.longrope_scaling_long_factors).astype(np.float32)
rope_scaling_short_mscale = config.longrope_short_mscale
rope_scaling_long_mscale = config.longrope_long_mscale
position_embedding_type = PositionEmbeddingType.long_rope
original_max_position_embeddings = config.original_max_position_embeddings
self.attention = Attention(
local_layer_idx=local_layer_idx,
hidden_size=config.hidden_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_kv_heads,
position_embedding_type=position_embedding_type,
rotary_embedding_base=config.rotary_embedding_base,
max_position_embeddings=config.max_position_embeddings,
original_max_position_embeddings=original_max_position_embeddings,
dtype=config.dtype,
attention_mask_type=attention_mask_type,
bias=True,
q_scaling=q_scaling,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quant_mode,
rope_scaling_short_factors=rope_scaling_short_factors,
rope_scaling_long_factors=rope_scaling_long_factors,
rope_scaling_short_mscale=rope_scaling_short_mscale,
rope_scaling_long_mscale=rope_scaling_long_mscale,
block_sparse_params=block_sparse_attn_params)
self.post_layernorm = LayerNorm(normalized_shape=config.hidden_size,
dtype=config.dtype)
self.mlp = MLP(hidden_size=config.hidden_size,
ffn_hidden_size=config.intermediate_size,
hidden_act=config.hidden_act,
dtype=config.dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quant_mode)
def forward(
self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
):
residual = hidden_states
input_layernorm_output = self.input_layernorm(hidden_states)
# Self attention
attention_output = self.attention(
input_layernorm_output,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
# Fully connected
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states, gegelu_limit=self.gegelu_limit)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class Phi3SmallModel(Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.vocab_embedding = Embedding(num_embeddings=config.vocab_size,
embedding_dim=config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(Phi3SmallDecoderLayer, config)
self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
dtype=config.dtype)
self.mup_embedding_multiplier = config.mup_embedding_multiplier
def forward(
self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None,
):
args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if prompt_embedding_table is not None else []
hidden_states = self.vocab_embedding(input_ids, *args)
if self.mup_embedding_multiplier is not None and self.mup_embedding_multiplier > 0.0:
hidden_states = hidden_states * self.mup_embedding_multiplier
hidden_states = self.layers(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
)
if use_cache:
hidden_states, presents = hidden_states
hidden_states = self.ln_f(hidden_states)
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class Phi3SmallForCausalLM(DecoderModelForCausalLM):
def __init__(self, config: PretrainedConfig):
transformer = Phi3SmallModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
lm_head = ParallelLMHead(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
super().__init__(config, transformer, lm_head)
@classmethod
def convert_hf_checkpoint(cls, model_dir, dtype, output_dir, args=None):
'''
Convert Huggingface checkpoint to TRT-LLM checkpoint
'''
hf_model = AutoModelForCausalLM.from_pretrained(model_dir,
torch_dtype="auto",
trust_remote_code=True)
config = convert_hf_config(hf_model.config, dtype, args)
with open(os.path.join(output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=4)
def covert_and_save(rank):
weights = convert_hf_weights(hf_model, config, args, rank)
safetensors.torch.save_file(
weights, os.path.join(output_dir, f'rank{rank}.safetensors'))
world_size = args.tp_size * args.pp_size
if args.workers == 1:
for rank in range(world_size):
covert_and_save(rank)
else:
with ThreadPoolExecutor(max_workers=args.workers) as p:
futures = [
p.submit(covert_and_save, rank)
for rank in range(world_size)
]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."