mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
131 lines
6.9 KiB
Markdown
131 lines
6.9 KiB
Markdown
(support-matrix)=
|
||
|
||
# Support Matrix
|
||
|
||
TensorRT-LLM optimizes the performance of a range of well-known models on NVIDIA GPUs. The following sections provide a list of supported GPU architectures as well as important features implemented in TensorRT-LLM.
|
||
|
||
## Models
|
||
|
||
### LLM Models
|
||
|
||
- [Arctic](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/arctic)
|
||
- [Baichuan/Baichuan2](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/baichuan)
|
||
- [BART](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec)
|
||
- [BERT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/bert)
|
||
- [BLOOM](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/bloom)
|
||
- [ByT5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec)
|
||
- [GLM/ChatGLM/ChatGLM2/ChatGLM3/GLM-4](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/chatglm)
|
||
- [Code LLaMA](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama)
|
||
- [DBRX](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/dbrx)
|
||
- [Exaone](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/exaone)
|
||
- [FairSeq NMT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec)
|
||
- [Falcon](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/falcon)
|
||
- [Flan-T5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec) [^encdec]
|
||
- [Gemma/Gemma2](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gemma)
|
||
- [GPT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gpt)
|
||
- [GPT-J](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gptj)
|
||
- [GPT-Nemo](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gpt)
|
||
- [GPT-NeoX](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gptneox)
|
||
- [Grok-1](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/grok)
|
||
- [InternLM](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/internlm)
|
||
- [InternLM2](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/internlm2)
|
||
- [LLaMA/LLaMA 2/LLaMA 3/LLaMA 3.1](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama)
|
||
- [Mamba](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/mamba)
|
||
- [mBART](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec)
|
||
- [Mistral](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama)
|
||
- [Mistral NeMo](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama)
|
||
- [Mixtral](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/mixtral)
|
||
- [MPT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/mpt)
|
||
- [Nemotron](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/nemotron)
|
||
- [mT5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec)
|
||
- [OPT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/opt)
|
||
- [Phi-1.5/Phi-2/Phi-3](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/phi)
|
||
- [Qwen/Qwen1.5/Qwen2](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/qwen)
|
||
- [Qwen-VL](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/qwenvl)
|
||
- [RecurrentGemma](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/recurrentgemma)
|
||
- [Replit Code](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/mpt)[^ReplitCode]
|
||
- [RoBERTa](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/bert)
|
||
- [SantaCoder](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gpt)
|
||
- [Skywork](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/skywork)
|
||
- [Smaug](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/smaug)
|
||
- [StarCoder](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gpt)
|
||
- [T5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec)
|
||
- [Whisper](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/whisper)
|
||
|
||
|
||
### Multi-Modal Models [^multimod]
|
||
|
||
- [BLIP2 w/ OPT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [BLIP2 w/ T5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [CogVLM](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) [^bf16only]
|
||
- [Deplot](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [Fuyu](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [Kosmos](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [LLaVA-v1.5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [LLaVa-Next](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [NeVA](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [Nougat](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [Phi-3-vision](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [Video NeVA](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
- [VILA](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)
|
||
|
||
|
||
(support-matrix-hardware)=
|
||
## Hardware
|
||
|
||
The following table shows the supported hardware for TensorRT-LLM.
|
||
|
||
If a GPU architecture is not listed, the TensorRT-LLM team does not develop or test the software on the architecture and support is limited to community support.
|
||
In addition, older architectures can have limitations for newer software releases.
|
||
|
||
```{list-table}
|
||
:header-rows: 1
|
||
:widths: 20 80
|
||
|
||
* -
|
||
- Hardware Compatibility
|
||
* - Operating System
|
||
- TensorRT-LLM requires Linux x86_64 or Windows.
|
||
* - GPU Model Architectures
|
||
-
|
||
- [NVIDIA Hopper Architecture](https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/)
|
||
- [NVIDIA Ada Lovelace Architecture](https://www.nvidia.com/en-us/technologies/ada-architecture/)
|
||
- [NVIDIA Ampere Architecture](https://www.nvidia.com/en-us/data-center/ampere-architecture/)
|
||
```
|
||
|
||
(support-matrix-software)=
|
||
## Software
|
||
|
||
The following table shows the supported software for TensorRT-LLM.
|
||
|
||
```{list-table}
|
||
:header-rows: 1
|
||
:widths: 20 80
|
||
|
||
* -
|
||
- Software Compatibility
|
||
* - Container
|
||
- [24.09](https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html)
|
||
* - TensorRT
|
||
- [10.5](https://docs.nvidia.com/deeplearning/tensorrt/release-notes/index.html)
|
||
* - Precision
|
||
-
|
||
- Hopper (SM90) - FP32, FP16, BF16, FP8, INT8, INT4
|
||
- Ada Lovelace (SM89) - FP32, FP16, BF16, FP8, INT8, INT4
|
||
- Ampere (SM80, SM86) - FP32, FP16, BF16, INT8, INT4[^smgte89]
|
||
```
|
||
[^ReplitCode]:Replit Code is not supported with the transformers 4.45+.
|
||
|
||
[^smgte89]: INT4 AWQ and GPTQ with FP8 activations require SM >= 89.
|
||
|
||
[^encdec]: Encoder-Decoder provides general encoder-decoder functionality that supports many encoder-decoder models such as T5 family, BART family, Whisper family, NMT family, and so on.
|
||
|
||
[^multimod]: Multi-modal provides general multi-modal functionality that supports many multi-modal architectures such as BLIP2 family, LLaVA family, and so on.
|
||
|
||
[^bf16only]: Only supports bfloat16 precision.
|
||
|
||
|
||
```{note}
|
||
Support for FP8 and quantized data types (INT8 or INT4) is not implemented for all the models. Refer to {ref}`precision` and [examples](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples) folder for additional information.
|
||
```
|