TensorRT-LLMs/examples/internlm2/README.md
Kaiyu Xie b777bd6475
Update TensorRT-LLM (#1725)
* Update TensorRT-LLM

---------

Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Tlntin <TlntinDeng01@Gmail.com>
Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com>
Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com>
Co-authored-by: Nathan Price <nathan@abridge.com>
Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com>
Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
2024-06-04 20:26:32 +08:00

202 lines
8.3 KiB
Markdown

# InternLM2
This document shows how to build and run InternLM2 7B / 20B models in TensorRT-LLM on both single GPU, single node multi-GPU and multi-node multi-GPU.
## Overview
The TensorRT-LLM InternLM2 implementation is based on the LLaMA model. The implementation can
be found in [model.py](../../tensorrt_llm/models/llama/model.py).
The TensorRT-LLM InternLM2 example code lies in [`examples/internlm2`](./):
* [`convert_checkpoint.py`](./convert_checkpoint.py) converts the Huggingface Model of InternLM2 into TensorRT-LLM checkpoint.
In addition, there are two shared files in the parent folder [`examples`](../) for inference and evaluation:
* [`../run.py`](../run.py) to run the inference on an input text;
* [`../summarize.py`](../summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset.
## Support Matrix
* FP16 / BF16
* INT8 & INT4 Weight-Only
* Tensor Parallel
## Usage
The TensorRT-LLM InternLM2 example code locates at [examples/internlm](./). It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference.
### Build TensorRT engine(s)
Please install required packages first to make sure the example uses matched `tensorrt_llm` version:
```bash
pip install -r requirements.txt
```
TensorRT-LLM InternLM2 builds TensorRT engine(s) from HF checkpoint. If no checkpoint directory is specified, TensorRT-LLM will build engine(s) with dummy weights.
InternLM2 has released several checkpoints of different size or capabilities under https://huggingface.co/internlm. Users can pick any one repository and follow instructions to prepare the checkpoint.
Below examples use [internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) and [internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) and assume these repositories are cloned or linked under this directory, for example `./internlm2-chat-7b`.
Normally `trtllm-build` only requires single GPU, but if you've already got all the GPUs needed for inference, you could enable parallel building to make the engine building process faster by adding `--workers` argument. Please note that currently `--workers` feature only supports single node.
Here're some examples:
```bash
# Build a single-GPU float16 engine from HF weights.
# gpt_attention_plugin is necessary in InternLM2.
# Try use_gemm_plugin to prevent accuracy issue.
cd examples/internlm2
# Convert the InternLM2 7B model using a single GPU and FP16.
python convert_checkpoint.py --model_dir ./internlm2-chat-7b/ \
--dtype float16 \
--output_dir ./internlm2-chat-7b/trt_engines/fp16/1-gpu/
# Note: setting `--dtype bfloat16` to use bfloat16 precision.
# BUild the InternLM2 7B model using a single GPU
trtllm-build --checkpoint_dir ./internlm2-chat-7b/trt_engines/fp16/1-gpu/ \
--output_dir ./engine_outputs \
--gemm_plugin float16
# Convert the InternLM2 7B model using a single GPU and apply INT8 weight-only quantization..
python convert_checkpoint.py --model_dir ./internlm2-chat-7b/ \
--dtype float16 \
--output_dir ./internlm2-chat-7b/trt_engines/int8/1-gpu/ \
--use_weight_only \
--weight_only_precision int8
trtllm-build --checkpoint_dir ./internlm2-chat-7b/trt_engines/int8/1-gpu/ \
--output_dir ./engine_outputs \
--gemm_plugin float16
# Note: setting `--weight_only_precision int4` to use INT4 weight-only quantization
# Build InternLM2 7B using 2-way tensor parallelism.
python convert_checkpoint.py --model_dir ./internlm2-chat-7b/ \
--dtype float16 \
--output_dir ./internlm2-chat-7b/trt_engines/fp16/2-gpu/ \
--tp_size 2
trtllm-build --checkpoint_dir ./internlm2-chat-7b/trt_engines/fp16/2-gpu/ \
--output_dir ./engine_outputs \
--gemm_plugin float16
# Build InternLM2 20B using 2-way tensor parallelism.
python convert_checkpoint.py --model_dir ./internlm2-chat-20b/ \
--dtype bfloat16 \
--output_dir ./internlm2-chat-20b/trt_engines/bf16/2-gpu/ \
--tp_size 2 --workers 2
trtllm-build --checkpoint_dir ./internlm2-chat-7b/trt_engines/bf16/2-gpu/ \
--output_dir ./engine_outputs \
--gpt_attention_plugin bfloat16 \
--gemm_plugin bfloat16
```
#### INT8 weight only
Examples:
```bash
cd examples/internlm2
# For 7B models
python convert_checkpoint.py --model_dir ./internlm2-chat-7b \
--output_dir ./internlm2-chat-7b/w8a16/ \
--dtype float16 \
--use_weight_only \
--weight_only_precision int8
# Build 7B model with both INT8 weight-only
trtllm-build --checkpoint_dir ./internlm2-chat-7b/w8a16 \
--output_dir ./engine_outputs \
--gemm_plugin float16
```
```bash
cd examples/internlm2
# For 20B models
python convert_checkpoint.py --model_dir ./internlm2-chat-20b \
--output_dir ./internlm2-chat-20b/w8a16 \
--dtype float16 \
--use_weight_only \
--weight_only_precision int8
# Build 20B model with both INT8 weight-only
trtllm-build --checkpoint_dir ./internlm2-chat-20b/w8a16 \
--output_dir ./engine_outputs \
--gemm_plugin float16 \
```
### Run
To run a TensorRT-LLM InternLM2 model using the engines generated by `trtllm-build`
```bash
# InternLM2 7B with fp16
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm2-chat-7b/ \
--engine_dir=./internlm2-chat-7b/trt_engines/fp16/1-gpu/
# InternLM2 7B with bf16
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm2-chat-7b/ \
--engine_dir=./internlm2-chat-7b/trt_engines/bf16/1-gpu/
# InternLM2 7B with int8 weight only quantization
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm2-chat-7b/ \
--engine_dir=./internlm2-chat-7b/trt_engines/weight_only/1-gpu/
# InternLM2 7B with fp16 and tensor parallelism
mpirun -n 2 --allow-run-as-root \
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm2-chat-7b/ \
--engine_dir=./internlm2-chat-7b/trt_engines/fp16/2-gpu/
# InternLM2 20B with fp16 and tensor parallelism and pipeline parallelism
mpirun -n 4 --allow-run-as-root \
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm2-chat-7b/ \
--engine_dir=./internlm2-chat-7b/trt_engines/bf16/4-gpu/
```
### Summarization using the InternLM2 model
```bash
# Run summarization using the InternLM2 7B model in FP16.
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm2-chat-7b/ \
--data_type fp16 \
--engine_dir ./engine_outputs
# Run summarization using the InternLM2 7B model quantized to w8a16.
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm2-chat-7b/ \
--data_type fp16 \
--engine_dir ./engine_outputs
# Run summarization using the InternLM2 7B model in FP16 using two GPUs.
mpirun -n 2 --allow-run-as-root \
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm2-chat-7b/ \
--data_type fp16 \
--engine_dir ./internlm2-chat-7b/trt_engines/fp16/2-gpu/
# Run summarization using the InternLM2 20B model in BF16 using 4 GPUs.
mpirun -n 4 --allow-run-as-root \
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm2-chat-20b/ \
--data_type bf16 \
--engine_dir ./internlm2-chat-20b/trt_engines/bf16/4-gpu/
```