TensorRT-LLMs/examples/models/contrib/grok/README.md
Guoming Zhang 9f0f52249e [None][doc] Rename TensorRT-LLM to TensorRT LLM for homepage and the … (#7850)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
2025-09-25 21:02:35 +08:00

87 lines
3.6 KiB
Markdown

# Grok-1
This document shows how to build and run grok-1 model in TensorRT LLM on both single GPU, single node multi-GPU and multi-node multi-GPU.
- [Grok1](#Grok-1)
- [Prerequisite](#prerequisite)
- [Hardware](#hardware)
- [Overview](#overview)
- [Support Matrix](#support-matrix)
- [Usage](#usage)
- [Build TensorRT engine(s)](#build-tensorrt-engines)
## Prerequisite
First of all, please clone the official grok-1 code repo with below commands and install the dependencies.
```bash
git clone https://github.com/xai-org/grok-1.git /path/to/folder
```
And then downloading the weights per [instructions](https://github.com/xai-org/grok-1?tab=readme-ov-file#downloading-the-weights).
## Hardware
The grok-1 model requires a node with 8x80GB GPU memory(at least).
## Overview
The TensorRT LLM Grok-1 implementation can be found in [tensorrt_llm/models/grok/model.py](../../../../tensorrt_llm/models/grok/model.py). The TensorRT LLM Grok-1 example code is located in [`examples/models/contrib/grok`](./). There is one main file:
* [`convert_checkpoint.py`](./convert_checkpoint.py) to convert the Grok-1 model into TensorRT LLM checkpoint format.
In addition, there are two shared files in the parent folder [`examples`](../../../) for inference and evaluation:
* [`../../../run.py`](../../../run.py) to run the inference on an input text;
* [`../../../summarize.py`](../../../summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/abisee/cnn_dailymail) dataset.
## Support Matrix
* INT8 Weight-Only
* Tensor Parallel
* STRONGLY TYPED
## Usage
The TensorRT LLM Grok-1 example code locates at [examples/models/contrib/grok](./). It takes xai weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference.
### Build TensorRT engine(s)
Please install required packages first to make sure the example uses matched `tensorrt_llm` version:
```bash
pip install -r requirements.txt
```
Need to prepare the Grok-1 checkpoint by following the guides here https://github.com/xai-org/grok-1.
TensorRT LLM Grok-1 builds TensorRT engine(s) from Xai's checkpoints.
Normally `trtllm-build` only requires single GPU, but if you've already got all the GPUs needed for inference, you could enable parallel building to make the engine building process faster by adding `--workers` argument. Please note that currently `workers` feature only supports single node.
Below is the step-by-step to run Grok-1 with TensorRT LLM.
```bash
# Build the bfloat16 engine from xai official weights.
python convert_checkpoint.py --model_dir ./tmp/grok-1/ \
--output_dir ./tllm_checkpoint_8gpus_bf16 \
--dtype bfloat16 \
--use_weight_only \
--tp_size 8 \
--workers 8
trtllm-build --checkpoint_dir ./tllm_checkpoint_8gpus_bf16 \
--output_dir ./tmp/grok-1/trt_engines/bf16/8-gpus \
--gpt_attention_plugin bfloat16 \
--gemm_plugin bfloat16 \
--moe_plugin bfloat16 \
--paged_kv_cache enable \
--remove_input_padding enable \
--workers 8
# Run Grok-1 with 8 GPUs
mpirun -n 8 --allow-run-as-root \
python ../../../run.py \
--input_text "The answer to life the universe and everything is of course" \
--engine_dir ./tmp/grok-1/trt_engines/bf16/8-gpus \
--max_output_len 50 --top_p 1 --top_k 8 --temperature 0.3 \
--vocab_file ./tmp/grok-1/tokenizer.model
```