TensorRT-LLMs/docs/source/torch/features/quantization.md
QI JUN 82547f733d
add feature support matrix for PyTorch backend (#5037)
Signed-off-by: QI JUN <22017000+QiJune@users.noreply.github.com>
Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
2025-07-01 10:09:54 +08:00

652 B

Quantization

The PyTorch backend supports FP8 and NVFP4 quantization. You can pass quantized models in HF model hub, which are generated by TensorRT Model Optimizer.

from tensorrt_llm._torch import LLM
llm = LLM(model='nvidia/Llama-3.1-8B-Instruct-FP8')
llm.generate("Hello, my name is")

Or you can try the following commands to get a quantized model by yourself:

git clone https://github.com/NVIDIA/TensorRT-Model-Optimizer.git
cd TensorRT-Model-Optimizer/examples/llm_ptq
scripts/huggingface_example.sh --model <huggingface_model_card> --quant fp8 --export_fmt hf